All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.clusterers.forOPTICSAndDBScan.DataObjects.ManhattanDataObject Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    Copyright (C) 2004  
 *    & Matthias Schubert ([email protected])
 *    & Zhanna Melnikova-Albrecht ([email protected])
 *    & Rainer Holzmann ([email protected])
 */

package weka.clusterers.forOPTICSAndDBScan.DataObjects;

import java.io.Serializable;

import weka.clusterers.forOPTICSAndDBScan.Databases.Database;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 * 

* ManhattanDataObject.java
* Authors: Rainer Holzmann, Zhanna Melnikova-Albrecht, Matthias Schubert
* Date: Aug 19, 2004
* Time: 5:50:22 PM
* $ Revision 1.4 $
*

* * @author Matthias Schubert ([email protected]) * @author Zhanna Melnikova-Albrecht ([email protected]) * @author Rainer Holzmann ([email protected]) * @version $Revision: 9420 $ */ public class ManhattanDataObject implements DataObject, Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -3417720553766544582L; /** * Holds the original instance */ private final Instance instance; /** * Holds the (unique) key that is associated with this DataObject */ private String key; /** * Holds the ID of the cluster, to which this DataObject is assigned */ private int clusterID; /** * Holds the status for this DataObject (true, if it has been processed, else * false) */ private boolean processed; /** * Holds the coreDistance for this DataObject */ private double c_dist; /** * Holds the reachabilityDistance for this DataObject */ private double r_dist; /** * Holds the database, that is the keeper of this DataObject */ private final Database database; // ***************************************************************************************************************** // constructors // ***************************************************************************************************************** /** * Constructs a new DataObject. The original instance is kept as * instance-variable * * @param originalInstance the original instance */ public ManhattanDataObject(Instance originalInstance, String key, Database database) { this.database = database; this.key = key; instance = originalInstance; clusterID = DataObject.UNCLASSIFIED; processed = false; c_dist = DataObject.UNDEFINED; r_dist = DataObject.UNDEFINED; } // ***************************************************************************************************************** // methods // ***************************************************************************************************************** /** * Compares two DataObjects in respect to their attribute-values * * @param dataObject The DataObject, that is compared with this.dataObject; * now assumed to be of the same type and with the same structure * @return Returns true, if the DataObjects correspond in each value, else * returns false */ public boolean equals(DataObject dataObject) { if (this == dataObject) return true; for (int i = 0; i < getInstance().numValues(); i++) { double i_value_Instance_1 = getInstance().valueSparse(i); double i_value_Instance_2 = dataObject.getInstance().valueSparse(i); if (i_value_Instance_1 != i_value_Instance_2) return false; } return true; } /** * Calculates the manhattan-distance between dataObject and this.dataObject * * @param dataObject The DataObject, that is used for distance-calculation * with this.dataObject now assumed to be of the same type and with * the same structure * @return double-value The manhattan-distance between dataObject and * this.dataObject NaN, if the computation could not be performed */ public double distance(DataObject dataObject) { double dist = 0.0; for (int i = 0; i < getInstance().numValues(); i++) { double cDistance = computeDistance(getInstance().index(i), getInstance() .valueSparse(i), dataObject.getInstance().valueSparse(i)); dist += Math.abs(cDistance); } return dist; } /** * Performs manhattan-distance-calculation between two given values * * @param index of the attribute within the DataObject's instance * @param v value_1 * @param v1 value_2 * @return double norm-distance between value_1 and value_2 */ private double computeDistance(int index, double v, double v1) { switch (getInstance().attribute(index).type()) { case Attribute.NOMINAL: return (Instance.isMissingValue(v) || Instance.isMissingValue(v1) || ((int) v != (int) v1)) ? 1 : 0; case Attribute.NUMERIC: if (Instance.isMissingValue(v) || Instance.isMissingValue(v1)) { if (Instance.isMissingValue(v) && Instance.isMissingValue(v1)) return 1; else { return (Instance.isMissingValue(v)) ? norm(v1, index) : norm(v, index); } } else return norm(v, index) - norm(v1, index); default: return 0; } } /** * Normalizes a given value of a numeric attribute. * * @param x the value to be normalized * @param i the attribute's index */ private double norm(double x, int i) { if (Double.isNaN(database.getAttributeMinValues()[i]) || Utils.eq(database.getAttributeMaxValues()[i], database.getAttributeMinValues()[i])) { return 0; } else { return (x - database.getAttributeMinValues()[i]) / (database.getAttributeMaxValues()[i] - database .getAttributeMinValues()[i]); } } /** * Returns the original instance * * @return originalInstance */ public Instance getInstance() { return instance; } /** * Returns the key for this DataObject * * @return key */ public String getKey() { return key; } /** * Sets the key for this DataObject * * @param key The key is represented as string */ public void setKey(String key) { this.key = key; } /** * Sets the clusterID (cluster), to which this DataObject belongs to * * @param clusterID Number of the Cluster */ public void setClusterLabel(int clusterID) { this.clusterID = clusterID; } /** * Returns the clusterID, to which this DataObject belongs to * * @return clusterID */ public int getClusterLabel() { return clusterID; } /** * Marks this dataObject as processed * * @param processed True, if the DataObject has been already processed, false * else */ public void setProcessed(boolean processed) { this.processed = processed; } /** * Gives information about the status of a dataObject * * @return True, if this dataObject has been processed, else false */ public boolean isProcessed() { return processed; } /** * Sets a new coreDistance for this dataObject * * @param c_dist coreDistance */ public void setCoreDistance(double c_dist) { this.c_dist = c_dist; } /** * Returns the coreDistance for this dataObject * * @return coreDistance */ public double getCoreDistance() { return c_dist; } /** * Sets a new reachability-distance for this dataObject */ public void setReachabilityDistance(double r_dist) { this.r_dist = r_dist; } /** * Returns the reachabilityDistance for this dataObject */ public double getReachabilityDistance() { return r_dist; } @Override public String toString() { return instance.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9420 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy