All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.CostSensitiveClassifierSplitEvaluator Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    CostSensitiveClassifierSplitEvaluator.java
 *    Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
 *
 */


package weka.experiment;

import weka.classifiers.Classifier;
import weka.classifiers.CostMatrix;
import weka.classifiers.Evaluation;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Summarizable;
import weka.core.Utils;

import java.io.BufferedReader;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileReader;
import java.io.ObjectOutputStream;
import java.lang.management.ManagementFactory;
import java.lang.management.ThreadMXBean;
import java.util.Enumeration;
import java.util.Vector;

/**
 
 * SplitEvaluator that produces results for a classification scheme on a nominal class attribute, including weighted misclassification costs.
 * 

* * Valid options are:

* *

 -W <class name>
 *  The full class name of the classifier.
 *  eg: weka.classifiers.bayes.NaiveBayes
* *
 -C <index>
 *  The index of the class for which IR statistics
 *  are to be output. (default 1)
* *
 -I <index>
 *  The index of an attribute to output in the
 *  results. This attribute should identify an
 *  instance in order to know which instances are
 *  in the test set of a cross validation. if 0
 *  no output (default 0).
* *
 -P
 *  Add target and prediction columns to the result
 *  for each fold.
* *
 
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -D <directory>
 *  Name of a directory to search for cost files when loading
 *  costs on demand (default current directory).
* * * All options after -- will be passed to the classifier. * * @author Len Trigg ([email protected]) * @version $Revision: 7516 $ */ public class CostSensitiveClassifierSplitEvaluator extends ClassifierSplitEvaluator { /** for serialization */ static final long serialVersionUID = -8069566663019501276L; /** * The directory used when loading cost files on demand, null indicates * current directory */ protected File m_OnDemandDirectory = new File(System.getProperty("user.dir")); /** The length of a result */ private static final int RESULT_SIZE = 31; /** * Returns a string describing this split evaluator * @return a description of the split evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return " SplitEvaluator that produces results for a classification scheme " +"on a nominal class attribute, including weighted misclassification " +"costs."; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(1); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } newVector.addElement(new Option( "\tName of a directory to search for cost files when loading\n" +"\tcosts on demand (default current directory).", "D", 1, "-D ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -W <class name>
   *  The full class name of the classifier.
   *  eg: weka.classifiers.bayes.NaiveBayes
* *
 -C <index>
   *  The index of the class for which IR statistics
   *  are to be output. (default 1)
* *
 -I <index>
   *  The index of an attribute to output in the
   *  results. This attribute should identify an
   *  instance in order to know which instances are
   *  in the test set of a cross validation. if 0
   *  no output (default 0).
* *
 -P
   *  Add target and prediction columns to the result
   *  for each fold.
* *
 
   * Options specific to classifier weka.classifiers.rules.ZeroR:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -D <directory>
   *  Name of a directory to search for cost files when loading
   *  costs on demand (default current directory).
* * * All options after -- will be passed to the classifier. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String demandDir = Utils.getOption('D', options); if (demandDir.length() != 0) { setOnDemandDirectory(new File(demandDir)); } super.setOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 3]; int current = 0; options[current++] = "-D"; options[current++] = "" + getOnDemandDirectory(); System.arraycopy(superOptions, 0, options, current, superOptions.length); current += superOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String onDemandDirectoryTipText() { return "The directory to look in for cost files. This directory will be " +"searched for cost files when loading on demand."; } /** * Returns the directory that will be searched for cost files when * loading on demand. * * @return The cost file search directory. */ public File getOnDemandDirectory() { return m_OnDemandDirectory; } /** * Sets the directory that will be searched for cost files when * loading on demand. * * @param newDir The cost file search directory. */ public void setOnDemandDirectory(File newDir) { if (newDir.isDirectory()) { m_OnDemandDirectory = newDir; } else { m_OnDemandDirectory = new File(newDir.getParent()); } } /** * Gets the data types of each of the result columns produced for a * single run. The number of result fields must be constant * for a given SplitEvaluator. * * @return an array containing objects of the type of each result column. * The objects should be Strings, or Doubles. */ public Object [] getResultTypes() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; Object [] resultTypes = new Object[RESULT_SIZE+addm]; Double doub = new Double(0); int current = 0; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Timing stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // sizes resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = ""; // add any additional measures for (int i=0;i classifier"; } return result + m_Template.getClass().getName() + " " + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 7516 $"); } } // CostSensitiveClassifierSplitEvaluator




© 2015 - 2025 Weber Informatics LLC | Privacy Policy