weka.experiment.PairedTTester Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* PairedTTester.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.experiment;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import java.io.BufferedReader;
import java.io.FileReader;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Enumeration;
import java.util.Vector;
/**
* Calculates T-Test statistics on data stored in a set of instances.
*
* Valid options are:
*
* -D <index,index2-index4,...>
* Specify list of columns that specify a unique
* dataset.
* First and last are valid indexes. (default none)
*
* -R <index>
* Set the index of the column containing the run number
*
* -F <index>
* Set the index of the column containing the fold number
*
* -G <index1,index2-index4,...>
* Specify list of columns that specify a unique
* 'result generator' (eg: classifier name and options).
* First and last are valid indexes. (default none)
*
* -S <significance level>
* Set the significance level for comparisons (default 0.05)
*
* -V
* Show standard deviations
*
* -L
* Produce table comparisons in Latex table format
*
* -csv
* Produce table comparisons in CSV table format
*
* -html
* Produce table comparisons in HTML table format
*
* -significance
* Produce table comparisons with only the significance values
*
* -gnuplot
* Produce table comparisons output suitable for GNUPlot
*
*
* @author Len Trigg ([email protected])
* @version $Revision: 6431 $
*/
public class PairedTTester
implements OptionHandler, Tester, RevisionHandler {
/** for serialization */
static final long serialVersionUID = 8370014624008728610L;
/** The set of instances we will analyse */
protected Instances m_Instances;
/** The index of the column containing the run number */
protected int m_RunColumn = 0;
/** The option setting for the run number column (-1 means last) */
protected int m_RunColumnSet = -1;
/** The option setting for the fold number column (-1 means none) */
protected int m_FoldColumn = -1;
/** The column to sort on (-1 means default sorting) */
protected int m_SortColumn = -1;
/** The sorting of the datasets (according to the sort column) */
protected int[] m_SortOrder = null;
/** The sorting of the columns (test base is always first) */
protected int[] m_ColOrder = null;
/** The significance level for comparisons */
protected double m_SignificanceLevel = 0.05;
/**
* The range of columns that specify a unique "dataset"
* (eg: scheme plus configuration)
*/
protected Range m_DatasetKeyColumnsRange = new Range();
/** An array containing the indexes of just the selected columns */
protected int [] m_DatasetKeyColumns;
/** The list of dataset specifiers */
protected DatasetSpecifiers m_DatasetSpecifiers =
new DatasetSpecifiers();
/**
* The range of columns that specify a unique result set
* (eg: scheme plus configuration)
*/
protected Range m_ResultsetKeyColumnsRange = new Range();
/** An array containing the indexes of just the selected columns */
protected int [] m_ResultsetKeyColumns;
/** An array containing the indexes of the datasets to display */
protected int[] m_DisplayedResultsets = null;
/** Stores a vector for each resultset holding all instances in each set */
protected FastVector m_Resultsets = new FastVector();
/** Indicates whether the instances have been partitioned */
protected boolean m_ResultsetsValid;
/** Indicates whether standard deviations should be displayed */
protected boolean m_ShowStdDevs = false;
/** the instance of the class to produce the output. */
protected ResultMatrix m_ResultMatrix = new ResultMatrixPlainText();
/** A list of unique "dataset" specifiers that have been observed */
protected class DatasetSpecifiers
implements RevisionHandler {
/** the specifiers that have been observed */
FastVector m_Specifiers = new FastVector();
/**
* Removes all specifiers.
*/
protected void removeAllSpecifiers() {
m_Specifiers.removeAllElements();
}
/**
* Add an instance to the list of specifiers (if necessary)
*
* @param inst the instance to add
*/
protected void add(Instance inst) {
for (int i = 0; i < m_Specifiers.size(); i++) {
Instance specifier = (Instance)m_Specifiers.elementAt(i);
boolean found = true;
for (int j = 0; j < m_DatasetKeyColumns.length; j++) {
if (inst.value(m_DatasetKeyColumns[j]) !=
specifier.value(m_DatasetKeyColumns[j])) {
found = false;
}
}
if (found) {
return;
}
}
m_Specifiers.addElement(inst);
}
/**
* Get the template at the given position.
*
* @param i the index
* @return the template
*/
protected Instance specifier(int i) {
return (Instance)m_Specifiers.elementAt(i);
}
/**
* Gets the number of specifiers.
*
* @return the current number of specifiers
*/
protected int numSpecifiers() {
return m_Specifiers.size();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 6431 $");
}
}
/** Utility class to store the instances pertaining to a dataset */
protected class Dataset
implements RevisionHandler {
/** the template */
Instance m_Template;
/** the dataset */
FastVector m_Dataset;
/**
* Constructor
*
* @param template the template
*/
public Dataset(Instance template) {
m_Template = template;
m_Dataset = new FastVector();
add(template);
}
/**
* Returns true if the two instances match on those attributes that have
* been designated key columns (eg: scheme name and scheme options)
*
* @param first the first instance
* @return true if first and second match on the currently set key columns
*/
protected boolean matchesTemplate(Instance first) {
for (int i = 0; i < m_DatasetKeyColumns.length; i++) {
if (first.value(m_DatasetKeyColumns[i]) !=
m_Template.value(m_DatasetKeyColumns[i])) {
return false;
}
}
return true;
}
/**
* Adds the given instance to the dataset
*
* @param inst the instance to add
*/
protected void add(Instance inst) {
m_Dataset.addElement(inst);
}
/**
* Returns a vector containing the instances in the dataset
*
* @return the current contents
*/
protected FastVector contents() {
return m_Dataset;
}
/**
* Sorts the instances in the dataset by the run number.
*
* @param runColumn a value of type 'int'
*/
public void sort(int runColumn) {
double [] runNums = new double [m_Dataset.size()];
for (int j = 0; j < runNums.length; j++) {
runNums[j] = ((Instance) m_Dataset.elementAt(j)).value(runColumn);
}
int [] index = Utils.stableSort(runNums);
FastVector newDataset = new FastVector(runNums.length);
for (int j = 0; j < index.length; j++) {
newDataset.addElement(m_Dataset.elementAt(index[j]));
}
m_Dataset = newDataset;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 6431 $");
}
}
/** Utility class to store the instances in a resultset */
protected class Resultset
implements RevisionHandler {
/** the template */
Instance m_Template;
/** the dataset */
FastVector m_Datasets;
/**
* Constructir
*
* @param template the template
*/
public Resultset(Instance template) {
m_Template = template;
m_Datasets = new FastVector();
add(template);
}
/**
* Returns true if the two instances match on those attributes that have
* been designated key columns (eg: scheme name and scheme options)
*
* @param first the first instance
* @return true if first and second match on the currently set key columns
*/
protected boolean matchesTemplate(Instance first) {
for (int i = 0; i < m_ResultsetKeyColumns.length; i++) {
if (first.value(m_ResultsetKeyColumns[i]) !=
m_Template.value(m_ResultsetKeyColumns[i])) {
return false;
}
}
return true;
}
/**
* Returns a string descriptive of the resultset key column values
* for this resultset
*
* @return a value of type 'String'
*/
protected String templateString() {
String result = "";
String tempResult = "";
for (int i = 0; i < m_ResultsetKeyColumns.length; i++) {
tempResult = m_Template.toString(m_ResultsetKeyColumns[i]) + ' ';
// compact the string
tempResult = Utils.removeSubstring(tempResult, "weka.classifiers.");
tempResult = Utils.removeSubstring(tempResult, "weka.filters.");
tempResult = Utils.removeSubstring(tempResult, "weka.attributeSelection.");
result += tempResult;
}
return result.trim();
}
/**
* Returns a vector containing all instances belonging to one dataset.
*
* @param inst a template instance
* @return a value of type 'FastVector'
*/
public FastVector dataset(Instance inst) {
for (int i = 0; i < m_Datasets.size(); i++) {
if (((Dataset)m_Datasets.elementAt(i)).matchesTemplate(inst)) {
return ((Dataset)m_Datasets.elementAt(i)).contents();
}
}
return null;
}
/**
* Adds an instance to this resultset
*
* @param newInst a value of type 'Instance'
*/
public void add(Instance newInst) {
for (int i = 0; i < m_Datasets.size(); i++) {
if (((Dataset)m_Datasets.elementAt(i)).matchesTemplate(newInst)) {
((Dataset)m_Datasets.elementAt(i)).add(newInst);
return;
}
}
Dataset newDataset = new Dataset(newInst);
m_Datasets.addElement(newDataset);
}
/**
* Sorts the instances in each dataset by the run number.
*
* @param runColumn a value of type 'int'
*/
public void sort(int runColumn) {
for (int i = 0; i < m_Datasets.size(); i++) {
((Dataset)m_Datasets.elementAt(i)).sort(runColumn);
}
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 6431 $");
}
} // Resultset
/**
* Returns a string descriptive of the key column values for
* the "datasets
*
* @param template the template
* @return a value of type 'String'
*/
protected String templateString(Instance template) {
String result = "";
for (int i = 0; i < m_DatasetKeyColumns.length; i++) {
result += template.toString(m_DatasetKeyColumns[i]) + ' ';
}
if (result.startsWith("weka.classifiers.")) {
result = result.substring("weka.classifiers.".length());
}
return result.trim();
}
/**
* Sets the matrix to use to produce the output.
* @param matrix the instance to use to produce the output
* @see ResultMatrix
*/
public void setResultMatrix(ResultMatrix matrix) {
m_ResultMatrix = matrix;
}
/**
* Gets the instance that produces the output.
* @return the instance to produce the output
*/
public ResultMatrix getResultMatrix() {
return m_ResultMatrix;
}
/**
* Set whether standard deviations are displayed or not.
* @param s true if standard deviations are to be displayed
*/
public void setShowStdDevs(boolean s) {
m_ShowStdDevs = s;
}
/**
* Returns true if standard deviations have been requested.
* @return true if standard deviations are to be displayed.
*/
public boolean getShowStdDevs() {
return m_ShowStdDevs;
}
/**
* Separates the instances into resultsets and by dataset/run.
*
* @throws Exception if the TTest parameters have not been set.
*/
protected void prepareData() throws Exception {
if (m_Instances == null) {
throw new Exception("No instances have been set");
}
if (m_RunColumnSet == -1) {
m_RunColumn = m_Instances.numAttributes() - 1;
} else {
m_RunColumn = m_RunColumnSet;
}
if (m_ResultsetKeyColumnsRange == null) {
throw new Exception("No result specifier columns have been set");
}
m_ResultsetKeyColumnsRange.setUpper(m_Instances.numAttributes() - 1);
m_ResultsetKeyColumns = m_ResultsetKeyColumnsRange.getSelection();
if (m_DatasetKeyColumnsRange == null) {
throw new Exception("No dataset specifier columns have been set");
}
m_DatasetKeyColumnsRange.setUpper(m_Instances.numAttributes() - 1);
m_DatasetKeyColumns = m_DatasetKeyColumnsRange.getSelection();
// Split the data up into result sets
m_Resultsets.removeAllElements();
m_DatasetSpecifiers.removeAllSpecifiers();
for (int i = 0; i < m_Instances.numInstances(); i++) {
Instance current = m_Instances.instance(i);
if (current.isMissing(m_RunColumn)) {
throw new Exception("Instance has missing value in run "
+ "column!\n" + current);
}
for (int j = 0; j < m_ResultsetKeyColumns.length; j++) {
if (current.isMissing(m_ResultsetKeyColumns[j])) {
throw new Exception("Instance has missing value in resultset key "
+ "column " + (m_ResultsetKeyColumns[j] + 1)
+ "!\n" + current);
}
}
for (int j = 0; j < m_DatasetKeyColumns.length; j++) {
if (current.isMissing(m_DatasetKeyColumns[j])) {
throw new Exception("Instance has missing value in dataset key "
+ "column " + (m_DatasetKeyColumns[j] + 1)
+ "!\n" + current);
}
}
boolean found = false;
for (int j = 0; j < m_Resultsets.size(); j++) {
Resultset resultset = (Resultset) m_Resultsets.elementAt(j);
if (resultset.matchesTemplate(current)) {
resultset.add(current);
found = true;
break;
}
}
if (!found) {
Resultset resultset = new Resultset(current);
m_Resultsets.addElement(resultset);
}
m_DatasetSpecifiers.add(current);
}
// Tell each resultset to sort on the run column
for (int j = 0; j < m_Resultsets.size(); j++) {
Resultset resultset = (Resultset) m_Resultsets.elementAt(j);
if (m_FoldColumn >= 0) {
// sort on folds first in case they are out of order
resultset.sort(m_FoldColumn);
}
resultset.sort(m_RunColumn);
}
m_ResultsetsValid = true;
}
/**
* Gets the number of datasets in the resultsets
*
* @return the number of datasets in the resultsets
*/
public int getNumDatasets() {
if (!m_ResultsetsValid) {
try {
prepareData();
} catch (Exception ex) {
ex.printStackTrace();
return 0;
}
}
return m_DatasetSpecifiers.numSpecifiers();
}
/**
* Gets the number of resultsets in the data.
*
* @return the number of resultsets in the data
*/
public int getNumResultsets() {
if (!m_ResultsetsValid) {
try {
prepareData();
} catch (Exception ex) {
ex.printStackTrace();
return 0;
}
}
return m_Resultsets.size();
}
/**
* Gets a string descriptive of the specified resultset.
*
* @param index the index of the resultset
* @return a descriptive string for the resultset
*/
public String getResultsetName(int index) {
if (!m_ResultsetsValid) {
try {
prepareData();
} catch (Exception ex) {
ex.printStackTrace();
return null;
}
}
return ((Resultset) m_Resultsets.elementAt(index)).templateString();
}
/**
* Checks whether the resultset with the given index shall be displayed.
*
* @param index the index of the resultset to check whether it shall be displayed
* @return whether the specified resultset is displayed
*/
public boolean displayResultset(int index) {
boolean result;
int i;
result = true;
if (m_DisplayedResultsets != null) {
result = false;
for (i = 0; i < m_DisplayedResultsets.length; i++) {
if (m_DisplayedResultsets[i] == index) {
result = true;
break;
}
}
}
return result;
}
/**
* Computes a paired t-test comparison for a specified dataset between
* two resultsets.
*
* @param datasetSpecifier the dataset specifier
* @param resultset1Index the index of the first resultset
* @param resultset2Index the index of the second resultset
* @param comparisonColumn the column containing values to compare
* @return the results of the paired comparison
* @throws Exception if an error occurs
*/
public PairedStats calculateStatistics(Instance datasetSpecifier,
int resultset1Index,
int resultset2Index,
int comparisonColumn) throws Exception {
if (m_Instances.attribute(comparisonColumn).type()
!= Attribute.NUMERIC) {
throw new Exception("Comparison column " + (comparisonColumn + 1)
+ " ("
+ m_Instances.attribute(comparisonColumn).name()
+ ") is not numeric");
}
if (!m_ResultsetsValid) {
prepareData();
}
Resultset resultset1 = (Resultset) m_Resultsets.elementAt(resultset1Index);
Resultset resultset2 = (Resultset) m_Resultsets.elementAt(resultset2Index);
FastVector dataset1 = resultset1.dataset(datasetSpecifier);
FastVector dataset2 = resultset2.dataset(datasetSpecifier);
String datasetName = templateString(datasetSpecifier);
if (dataset1 == null) {
throw new Exception("No results for dataset=" + datasetName
+ " for resultset=" + resultset1.templateString());
} else if (dataset2 == null) {
throw new Exception("No results for dataset=" + datasetName
+ " for resultset=" + resultset2.templateString());
} else if (dataset1.size() != dataset2.size()) {
throw new Exception("Results for dataset=" + datasetName
+ " differ in size for resultset="
+ resultset1.templateString()
+ " and resultset="
+ resultset2.templateString()
);
}
PairedStats pairedStats = new PairedStats(m_SignificanceLevel);
for (int k = 0; k < dataset1.size(); k ++) {
Instance current1 = (Instance) dataset1.elementAt(k);
Instance current2 = (Instance) dataset2.elementAt(k);
if (current1.isMissing(comparisonColumn)) {
System.err.println("Instance has missing value in comparison "
+ "column!\n" + current1);
continue;
}
if (current2.isMissing(comparisonColumn)) {
System.err.println("Instance has missing value in comparison "
+ "column!\n" + current2);
continue;
}
if (current1.value(m_RunColumn) != current2.value(m_RunColumn)) {
System.err.println("Run numbers do not match!\n"
+ current1 + current2);
}
if (m_FoldColumn != -1) {
if (current1.value(m_FoldColumn) != current2.value(m_FoldColumn)) {
System.err.println("Fold numbers do not match!\n"
+ current1 + current2);
}
}
double value1 = current1.value(comparisonColumn);
double value2 = current2.value(comparisonColumn);
pairedStats.add(value1, value2);
}
pairedStats.calculateDerived();
//System.err.println("Differences stats:\n" + pairedStats.differencesStats);
return pairedStats;
}
/**
* Creates a key that maps resultset numbers to their descriptions.
*
* @return a value of type 'String'
*/
public String resultsetKey() {
if (!m_ResultsetsValid) {
try {
prepareData();
} catch (Exception ex) {
ex.printStackTrace();
return ex.getMessage();
}
}
String result = "";
for (int j = 0; j < getNumResultsets(); j++) {
result += "(" + (j + 1) + ") " + getResultsetName(j) + '\n';
}
return result + '\n';
}
/**
* Creates a "header" string describing the current resultsets.
*
* @param comparisonColumn a value of type 'int'
* @return a value of type 'String'
*/
public String header(int comparisonColumn) {
if (!m_ResultsetsValid) {
try {
prepareData();
} catch (Exception ex) {
ex.printStackTrace();
return ex.getMessage();
}
}
initResultMatrix();
m_ResultMatrix.addHeader("Tester", getClass().getName());
m_ResultMatrix.addHeader("Analysing", m_Instances.attribute(comparisonColumn).name());
m_ResultMatrix.addHeader("Datasets", Integer.toString(getNumDatasets()));
m_ResultMatrix.addHeader("Resultsets", Integer.toString(getNumResultsets()));
m_ResultMatrix.addHeader("Confidence", getSignificanceLevel() + " (two tailed)");
m_ResultMatrix.addHeader("Sorted by", getSortColumnName());
m_ResultMatrix.addHeader("Date", (new SimpleDateFormat()).format(new Date()));
return m_ResultMatrix.toStringHeader() + "\n";
}
/**
* Carries out a comparison between all resultsets, counting the number
* of datsets where one resultset outperforms the other.
*
* @param comparisonColumn the index of the comparison column
* @param nonSigWin for storing the non-significant wins
* @return a 2d array where element [i][j] is the number of times resultset
* j performed significantly better than resultset i.
* @throws Exception if an error occurs
*/
public int [][] multiResultsetWins(int comparisonColumn, int [][] nonSigWin)
throws Exception {
int numResultsets = getNumResultsets();
int [][] win = new int [numResultsets][numResultsets];
// int [][] nonSigWin = new int [numResultsets][numResultsets];
for (int i = 0; i < numResultsets; i++) {
for (int j = i + 1; j < numResultsets; j++) {
System.err.print("Comparing (" + (i + 1) + ") with ("
+ (j + 1) + ")\r");
System.err.flush();
for (int k = 0; k < getNumDatasets(); k++) {
try {
PairedStats pairedStats =
calculateStatistics(m_DatasetSpecifiers.specifier(k), i, j,
comparisonColumn);
if (pairedStats.differencesSignificance < 0) {
win[i][j]++;
} else if (pairedStats.differencesSignificance > 0) {
win[j][i]++;
}
if (pairedStats.differencesStats.mean < 0) {
nonSigWin[i][j]++;
} else if (pairedStats.differencesStats.mean > 0) {
nonSigWin[j][i]++;
}
} catch (Exception ex) {
//ex.printStackTrace();
System.err.println(ex.getMessage());
}
}
}
}
return win;
}
/**
* clears the content and fills the column and row names according to the
* given sorting
*/
protected void initResultMatrix() {
m_ResultMatrix.setSize(getNumResultsets(), getNumDatasets());
m_ResultMatrix.setShowStdDev(m_ShowStdDevs);
for (int i = 0; i < getNumDatasets(); i++)
m_ResultMatrix.setRowName(i,
templateString(m_DatasetSpecifiers.specifier(i)));
for (int j = 0; j < getNumResultsets(); j++) {
m_ResultMatrix.setColName(j, getResultsetName(j));
m_ResultMatrix.setColHidden(j, !displayResultset(j));
}
}
/**
* Carries out a comparison between all resultsets, counting the number
* of datsets where one resultset outperforms the other. The results
* are summarized in a table.
*
* @param comparisonColumn the index of the comparison column
* @return the results in a string
* @throws Exception if an error occurs
*/
public String multiResultsetSummary(int comparisonColumn)
throws Exception {
int[][] nonSigWin = new int [getNumResultsets()][getNumResultsets()];
int[][] win = multiResultsetWins(comparisonColumn, nonSigWin);
initResultMatrix();
m_ResultMatrix.setSummary(nonSigWin, win);
return m_ResultMatrix.toStringSummary();
}
/**
* returns a ranking of the resultsets
*
* @param comparisonColumn the column to compare with
* @return the ranking
* @throws Exception if something goes wrong
*/
public String multiResultsetRanking(int comparisonColumn)
throws Exception {
int[][] nonSigWin = new int [getNumResultsets()][getNumResultsets()];
int[][] win = multiResultsetWins(comparisonColumn, nonSigWin);
initResultMatrix();
m_ResultMatrix.setRanking(win);
return m_ResultMatrix.toStringRanking();
}
/**
* Creates a comparison table where a base resultset is compared to the
* other resultsets. Results are presented for every dataset.
*
* @param baseResultset the index of the base resultset
* @param comparisonColumn the index of the column to compare over
* @return the comparison table string
* @throws Exception if an error occurs
*/
public String multiResultsetFull(int baseResultset,
int comparisonColumn) throws Exception {
int maxWidthMean = 2;
int maxWidthStdDev = 2;
double[] sortValues = new double[getNumDatasets()];
// determine max field width
for (int i = 0; i < getNumDatasets(); i++) {
sortValues[i] = Double.POSITIVE_INFINITY; // sorts skipped cols to end
for (int j = 0; j < getNumResultsets(); j++) {
if (!displayResultset(j))
continue;
try {
PairedStats pairedStats =
calculateStatistics(m_DatasetSpecifiers.specifier(i),
baseResultset, j, comparisonColumn);
if (!Double.isInfinite(pairedStats.yStats.mean) &&
!Double.isNaN(pairedStats.yStats.mean)) {
double width = ((Math.log(Math.abs(pairedStats.yStats.mean)) /
Math.log(10))+1);
if (width > maxWidthMean) {
maxWidthMean = (int)width;
}
}
if (j == baseResultset) {
if (getSortColumn() != -1)
sortValues[i] = calculateStatistics(
m_DatasetSpecifiers.specifier(i),
baseResultset, j, getSortColumn()).xStats.mean;
else
sortValues[i] = i;
}
if (m_ShowStdDevs &&
!Double.isInfinite(pairedStats.yStats.stdDev) &&
!Double.isNaN(pairedStats.yStats.stdDev)) {
double width = ((Math.log(Math.abs(pairedStats.yStats.stdDev)) /
Math.log(10))+1);
if (width > maxWidthStdDev) {
maxWidthStdDev = (int)width;
}
}
} catch (Exception ex) {
//ex.printStackTrace();
System.err.println(ex);
}
}
}
// sort rows according to sort column
m_SortOrder = Utils.sort(sortValues);
// determine column order
m_ColOrder = new int[getNumResultsets()];
m_ColOrder[0] = baseResultset;
int index = 1;
for (int i = 0; i < getNumResultsets(); i++) {
if (i == baseResultset)
continue;
m_ColOrder[index] = i;
index++;
}
// setup matrix
initResultMatrix();
m_ResultMatrix.setRowOrder(m_SortOrder);
m_ResultMatrix.setColOrder(m_ColOrder);
m_ResultMatrix.setMeanWidth(maxWidthMean);
m_ResultMatrix.setStdDevWidth(maxWidthStdDev);
m_ResultMatrix.setSignificanceWidth(1);
// make sure that test base is displayed, even though it might not be
// selected
for (int i = 0; i < m_ResultMatrix.getColCount(); i++) {
if ( (i == baseResultset)
&& (m_ResultMatrix.getColHidden(i)) ) {
m_ResultMatrix.setColHidden(i, false);
System.err.println("Note: test base was hidden - set visible!");
}
}
// the data
for (int i = 0; i < getNumDatasets(); i++) {
m_ResultMatrix.setRowName(i,
templateString(m_DatasetSpecifiers.specifier(i)));
for (int j = 0; j < getNumResultsets(); j++) {
try {
// calc stats
PairedStats pairedStats =
calculateStatistics(m_DatasetSpecifiers.specifier(i),
baseResultset, j, comparisonColumn);
// count
m_ResultMatrix.setCount(i, pairedStats.count);
// mean
m_ResultMatrix.setMean(j, i, pairedStats.yStats.mean);
// std dev
m_ResultMatrix.setStdDev(j, i, pairedStats.yStats.stdDev);
// significance
if (pairedStats.differencesSignificance < 0)
m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_WIN);
else if (pairedStats.differencesSignificance > 0)
m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_LOSS);
else
m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_TIE);
}
catch (Exception e) {
//e.printStackTrace();
System.err.println(e);
}
}
}
// generate output
StringBuffer result = new StringBuffer(1000);
try {
result.append(m_ResultMatrix.toStringMatrix());
}
catch (Exception e) {
e.printStackTrace();
}
// append a key so that we can tell the difference between long
// scheme+option names
result.append("\n\n" + m_ResultMatrix.toStringKey());
return result.toString();
}
/**
* Lists options understood by this object.
*
* @return an enumeration of Options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector();
newVector.addElement(new Option(
"\tSpecify list of columns that specify a unique\n"
+ "\tdataset.\n"
+ "\tFirst and last are valid indexes. (default none)",
"D", 1, "-D "));
newVector.addElement(new Option(
"\tSet the index of the column containing the run number",
"R", 1, "-R "));
newVector.addElement(new Option(
"\tSet the index of the column containing the fold number",
"F", 1, "-F "));
newVector.addElement(new Option(
"\tSpecify list of columns that specify a unique\n"
+ "\t'result generator' (eg: classifier name and options).\n"
+ "\tFirst and last are valid indexes. (default none)",
"G", 1, "-G "));
newVector.addElement(new Option(
"\tSet the significance level for comparisons (default 0.05)",
"S", 1, "-S "));
newVector.addElement(new Option(
"\tShow standard deviations",
"V", 0, "-V"));
newVector.addElement(new Option(
"\tProduce table comparisons in Latex table format",
"L", 0, "-L"));
newVector.addElement(new Option(
"\tProduce table comparisons in CSV table format",
"csv", 0, "-csv"));
newVector.addElement(new Option(
"\tProduce table comparisons in HTML table format",
"html", 0, "-html"));
newVector.addElement(new Option(
"\tProduce table comparisons with only the significance values",
"significance", 0, "-significance"));
newVector.addElement(new Option(
"\tProduce table comparisons output suitable for GNUPlot",
"gnuplot", 0, "-gnuplot"));
return newVector.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -D <index,index2-index4,...>
* Specify list of columns that specify a unique
* dataset.
* First and last are valid indexes. (default none)
*
* -R <index>
* Set the index of the column containing the run number
*
* -F <index>
* Set the index of the column containing the fold number
*
* -G <index1,index2-index4,...>
* Specify list of columns that specify a unique
* 'result generator' (eg: classifier name and options).
* First and last are valid indexes. (default none)
*
* -S <significance level>
* Set the significance level for comparisons (default 0.05)
*
* -V
* Show standard deviations
*
* -L
* Produce table comparisons in Latex table format
*
* -csv
* Produce table comparisons in CSV table format
*
* -html
* Produce table comparisons in HTML table format
*
* -significance
* Produce table comparisons with only the significance values
*
* -gnuplot
* Produce table comparisons output suitable for GNUPlot
*
*
* @param options an array containing options to set.
* @throws Exception if invalid options are given
*/
public void setOptions(String[] options) throws Exception {
setShowStdDevs(Utils.getFlag('V', options));
if (Utils.getFlag('L', options))
setResultMatrix(new ResultMatrixLatex());
if (Utils.getFlag("csv", options))
setResultMatrix(new ResultMatrixCSV());
if (Utils.getFlag("html", options))
setResultMatrix(new ResultMatrixHTML());
if (Utils.getFlag("significance", options))
setResultMatrix(new ResultMatrixSignificance());
String datasetList = Utils.getOption('D', options);
Range datasetRange = new Range();
if (datasetList.length() != 0) {
datasetRange.setRanges(datasetList);
}
setDatasetKeyColumns(datasetRange);
String indexStr = Utils.getOption('R', options);
if (indexStr.length() != 0) {
if (indexStr.equals("first")) {
setRunColumn(0);
} else if (indexStr.equals("last")) {
setRunColumn(-1);
} else {
setRunColumn(Integer.parseInt(indexStr) - 1);
}
} else {
setRunColumn(-1);
}
String foldStr = Utils.getOption('F', options);
if (foldStr.length() != 0) {
setFoldColumn(Integer.parseInt(foldStr) - 1);
} else {
setFoldColumn(-1);
}
String sigStr = Utils.getOption('S', options);
if (sigStr.length() != 0) {
setSignificanceLevel((new Double(sigStr)).doubleValue());
} else {
setSignificanceLevel(0.05);
}
String resultsetList = Utils.getOption('G', options);
Range generatorRange = new Range();
if (resultsetList.length() != 0) {
generatorRange.setRanges(resultsetList);
}
setResultsetKeyColumns(generatorRange);
}
/**
* Gets current settings of the PairedTTester.
*
* @return an array of strings containing current options.
*/
public String[] getOptions() {
String [] options = new String [11];
int current = 0;
if (!getResultsetKeyColumns().getRanges().equals("")) {
options[current++] = "-G";
options[current++] = getResultsetKeyColumns().getRanges();
}
if (!getDatasetKeyColumns().getRanges().equals("")) {
options[current++] = "-D";
options[current++] = getDatasetKeyColumns().getRanges();
}
options[current++] = "-R";
options[current++] = "" + (getRunColumn() + 1);
options[current++] = "-S";
options[current++] = "" + getSignificanceLevel();
if (getShowStdDevs()) {
options[current++] = "-V";
}
if (getResultMatrix() instanceof ResultMatrixLatex)
options[current++] = "-L";
if (getResultMatrix() instanceof ResultMatrixCSV)
options[current++] = "-csv";
if (getResultMatrix() instanceof ResultMatrixHTML)
options[current++] = "-html";
if (getResultMatrix() instanceof ResultMatrixSignificance)
options[current++] = "-significance";
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Get the value of ResultsetKeyColumns.
*
* @return Value of ResultsetKeyColumns.
*/
public Range getResultsetKeyColumns() {
return m_ResultsetKeyColumnsRange;
}
/**
* Set the value of ResultsetKeyColumns.
*
* @param newResultsetKeyColumns Value to assign to ResultsetKeyColumns.
*/
public void setResultsetKeyColumns(Range newResultsetKeyColumns) {
m_ResultsetKeyColumnsRange = newResultsetKeyColumns;
m_ResultsetsValid = false;
}
/**
* Gets the indices of the the datasets that are displayed (if null
* then all are displayed). The base is always displayed.
*
* @return the indices of the datasets to display
*/
public int[] getDisplayedResultsets() {
return m_DisplayedResultsets;
}
/**
* Sets the indicies of the datasets to display (null
means all).
* The base is always displayed.
*
* @param cols the indices of the datasets to display
*/
public void setDisplayedResultsets(int[] cols) {
m_DisplayedResultsets = cols;
}
/**
* Get the value of SignificanceLevel.
*
* @return Value of SignificanceLevel.
*/
public double getSignificanceLevel() {
return m_SignificanceLevel;
}
/**
* Set the value of SignificanceLevel.
*
* @param newSignificanceLevel Value to assign to SignificanceLevel.
*/
public void setSignificanceLevel(double newSignificanceLevel) {
m_SignificanceLevel = newSignificanceLevel;
}
/**
* Get the value of DatasetKeyColumns.
*
* @return Value of DatasetKeyColumns.
*/
public Range getDatasetKeyColumns() {
return m_DatasetKeyColumnsRange;
}
/**
* Set the value of DatasetKeyColumns.
*
* @param newDatasetKeyColumns Value to assign to DatasetKeyColumns.
*/
public void setDatasetKeyColumns(Range newDatasetKeyColumns) {
m_DatasetKeyColumnsRange = newDatasetKeyColumns;
m_ResultsetsValid = false;
}
/**
* Get the value of RunColumn.
*
* @return Value of RunColumn.
*/
public int getRunColumn() {
return m_RunColumnSet;
}
/**
* Set the value of RunColumn.
*
* @param newRunColumn Value to assign to RunColumn.
*/
public void setRunColumn(int newRunColumn) {
m_RunColumnSet = newRunColumn;
m_ResultsetsValid = false;
}
/**
* Get the value of FoldColumn.
*
* @return Value of FoldColumn.
*/
public int getFoldColumn() {
return m_FoldColumn;
}
/**
* Set the value of FoldColumn.
*
* @param newFoldColumn Value to assign to FoldColumn.
*/
public void setFoldColumn(int newFoldColumn) {
m_FoldColumn = newFoldColumn;
m_ResultsetsValid = false;
}
/**
* Returns the name of the column to sort on.
*
* @return the name of the column to sort on.
*/
public String getSortColumnName() {
if (getSortColumn() == -1)
return "-";
else
return m_Instances.attribute(getSortColumn()).name();
}
/**
* Returns the column to sort on, -1 means the default sorting.
*
* @return the column to sort on.
*/
public int getSortColumn() {
return m_SortColumn;
}
/**
* Set the column to sort on, -1 means the default sorting.
*
* @param newSortColumn the new sort column.
*/
public void setSortColumn(int newSortColumn) {
if (newSortColumn >= -1)
m_SortColumn = newSortColumn;
}
/**
* Get the value of Instances.
*
* @return Value of Instances.
*/
public Instances getInstances() {
return m_Instances;
}
/**
* Set the value of Instances.
*
* @param newInstances Value to assign to Instances.
*/
public void setInstances(Instances newInstances) {
m_Instances = newInstances;
m_ResultsetsValid = false;
}
/**
* retrieves all the settings from the given Tester
*
* @param tester the Tester to get the settings from
*/
public void assign(Tester tester) {
setInstances(tester.getInstances());
setResultMatrix(tester.getResultMatrix());
setShowStdDevs(tester.getShowStdDevs());
setResultsetKeyColumns(tester.getResultsetKeyColumns());
setDisplayedResultsets(tester.getDisplayedResultsets());
setSignificanceLevel(tester.getSignificanceLevel());
setDatasetKeyColumns(tester.getDatasetKeyColumns());
setRunColumn(tester.getRunColumn());
setFoldColumn(tester.getFoldColumn());
setSortColumn(tester.getSortColumn());
}
/**
* returns a string that is displayed as tooltip on the "perform test"
* button in the experimenter
*
* @return the tool tip
*/
public String getToolTipText() {
return "Performs test using t-test statistic";
}
/**
* returns the name of the tester
*
* @return the display name
*/
public String getDisplayName() {
return "Paired T-Tester";
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 6431 $");
}
/**
* Test the class from the command line.
*
* @param args contains options for the instance ttests
*/
public static void main(String args[]) {
try {
PairedTTester tt = new PairedTTester();
String datasetName = Utils.getOption('t', args);
String compareColStr = Utils.getOption('c', args);
String baseColStr = Utils.getOption('b', args);
boolean summaryOnly = Utils.getFlag('s', args);
boolean rankingOnly = Utils.getFlag('r', args);
try {
if ((datasetName.length() == 0)
|| (compareColStr.length() == 0)) {
throw new Exception("-t and -c options are required");
}
tt.setOptions(args);
Utils.checkForRemainingOptions(args);
} catch (Exception ex) {
String result = "";
Enumeration enu = tt.listOptions();
while (enu.hasMoreElements()) {
Option option = (Option) enu.nextElement();
result += option.synopsis() + '\n'
+ option.description() + '\n';
}
throw new Exception(
"Usage:\n\n"
+ "-t \n"
+ "\tSet the dataset containing data to evaluate\n"
+ "-b \n"
+ "\tSet the resultset to base comparisons against (optional)\n"
+ "-c \n"
+ "\tSet the column to perform a comparison on\n"
+ "-s\n"
+ "\tSummarize wins over all resultset pairs\n\n"
+ "-r\n"
+ "\tGenerate a resultset ranking\n\n"
+ result);
}
Instances data = new Instances(new BufferedReader(
new FileReader(datasetName)));
tt.setInstances(data);
// tt.prepareData();
int compareCol = Integer.parseInt(compareColStr) - 1;
System.out.println(tt.header(compareCol));
if (rankingOnly) {
System.out.println(tt.multiResultsetRanking(compareCol));
} else if (summaryOnly) {
System.out.println(tt.multiResultsetSummary(compareCol));
} else {
System.out.println(tt.resultsetKey());
if (baseColStr.length() == 0) {
for (int i = 0; i < tt.getNumResultsets(); i++) {
if (!tt.displayResultset(i))
continue;
System.out.println(tt.multiResultsetFull(i, compareCol));
}
} else {
int baseCol = Integer.parseInt(baseColStr) - 1;
System.out.println(tt.multiResultsetFull(baseCol, compareCol));
}
}
} catch(Exception e) {
e.printStackTrace();
System.err.println(e.getMessage());
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy