All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.PairedTTester Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    PairedTTester.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */


package weka.experiment;

import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.io.BufferedReader;
import java.io.FileReader;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Enumeration;
import java.util.Vector;

/**
 * Calculates T-Test statistics on data stored in a set of instances. 

* * Valid options are:

* *

 -D <index,index2-index4,...>
 *  Specify list of columns that specify a unique
 *  dataset.
 *  First and last are valid indexes. (default none)
* *
 -R <index>
 *  Set the index of the column containing the run number
* *
 -F <index>
 *  Set the index of the column containing the fold number
* *
 -G <index1,index2-index4,...>
 *  Specify list of columns that specify a unique
 *  'result generator' (eg: classifier name and options).
 *  First and last are valid indexes. (default none)
* *
 -S <significance level>
 *  Set the significance level for comparisons (default 0.05)
* *
 -V
 *  Show standard deviations
* *
 -L
 *  Produce table comparisons in Latex table format
* *
 -csv
 *  Produce table comparisons in CSV table format
* *
 -html
 *  Produce table comparisons in HTML table format
* *
 -significance
 *  Produce table comparisons with only the significance values
* *
 -gnuplot
 *  Produce table comparisons output suitable for GNUPlot
* * * @author Len Trigg ([email protected]) * @version $Revision: 6431 $ */ public class PairedTTester implements OptionHandler, Tester, RevisionHandler { /** for serialization */ static final long serialVersionUID = 8370014624008728610L; /** The set of instances we will analyse */ protected Instances m_Instances; /** The index of the column containing the run number */ protected int m_RunColumn = 0; /** The option setting for the run number column (-1 means last) */ protected int m_RunColumnSet = -1; /** The option setting for the fold number column (-1 means none) */ protected int m_FoldColumn = -1; /** The column to sort on (-1 means default sorting) */ protected int m_SortColumn = -1; /** The sorting of the datasets (according to the sort column) */ protected int[] m_SortOrder = null; /** The sorting of the columns (test base is always first) */ protected int[] m_ColOrder = null; /** The significance level for comparisons */ protected double m_SignificanceLevel = 0.05; /** * The range of columns that specify a unique "dataset" * (eg: scheme plus configuration) */ protected Range m_DatasetKeyColumnsRange = new Range(); /** An array containing the indexes of just the selected columns */ protected int [] m_DatasetKeyColumns; /** The list of dataset specifiers */ protected DatasetSpecifiers m_DatasetSpecifiers = new DatasetSpecifiers(); /** * The range of columns that specify a unique result set * (eg: scheme plus configuration) */ protected Range m_ResultsetKeyColumnsRange = new Range(); /** An array containing the indexes of just the selected columns */ protected int [] m_ResultsetKeyColumns; /** An array containing the indexes of the datasets to display */ protected int[] m_DisplayedResultsets = null; /** Stores a vector for each resultset holding all instances in each set */ protected FastVector m_Resultsets = new FastVector(); /** Indicates whether the instances have been partitioned */ protected boolean m_ResultsetsValid; /** Indicates whether standard deviations should be displayed */ protected boolean m_ShowStdDevs = false; /** the instance of the class to produce the output. */ protected ResultMatrix m_ResultMatrix = new ResultMatrixPlainText(); /** A list of unique "dataset" specifiers that have been observed */ protected class DatasetSpecifiers implements RevisionHandler { /** the specifiers that have been observed */ FastVector m_Specifiers = new FastVector(); /** * Removes all specifiers. */ protected void removeAllSpecifiers() { m_Specifiers.removeAllElements(); } /** * Add an instance to the list of specifiers (if necessary) * * @param inst the instance to add */ protected void add(Instance inst) { for (int i = 0; i < m_Specifiers.size(); i++) { Instance specifier = (Instance)m_Specifiers.elementAt(i); boolean found = true; for (int j = 0; j < m_DatasetKeyColumns.length; j++) { if (inst.value(m_DatasetKeyColumns[j]) != specifier.value(m_DatasetKeyColumns[j])) { found = false; } } if (found) { return; } } m_Specifiers.addElement(inst); } /** * Get the template at the given position. * * @param i the index * @return the template */ protected Instance specifier(int i) { return (Instance)m_Specifiers.elementAt(i); } /** * Gets the number of specifiers. * * @return the current number of specifiers */ protected int numSpecifiers() { return m_Specifiers.size(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6431 $"); } } /** Utility class to store the instances pertaining to a dataset */ protected class Dataset implements RevisionHandler { /** the template */ Instance m_Template; /** the dataset */ FastVector m_Dataset; /** * Constructor * * @param template the template */ public Dataset(Instance template) { m_Template = template; m_Dataset = new FastVector(); add(template); } /** * Returns true if the two instances match on those attributes that have * been designated key columns (eg: scheme name and scheme options) * * @param first the first instance * @return true if first and second match on the currently set key columns */ protected boolean matchesTemplate(Instance first) { for (int i = 0; i < m_DatasetKeyColumns.length; i++) { if (first.value(m_DatasetKeyColumns[i]) != m_Template.value(m_DatasetKeyColumns[i])) { return false; } } return true; } /** * Adds the given instance to the dataset * * @param inst the instance to add */ protected void add(Instance inst) { m_Dataset.addElement(inst); } /** * Returns a vector containing the instances in the dataset * * @return the current contents */ protected FastVector contents() { return m_Dataset; } /** * Sorts the instances in the dataset by the run number. * * @param runColumn a value of type 'int' */ public void sort(int runColumn) { double [] runNums = new double [m_Dataset.size()]; for (int j = 0; j < runNums.length; j++) { runNums[j] = ((Instance) m_Dataset.elementAt(j)).value(runColumn); } int [] index = Utils.stableSort(runNums); FastVector newDataset = new FastVector(runNums.length); for (int j = 0; j < index.length; j++) { newDataset.addElement(m_Dataset.elementAt(index[j])); } m_Dataset = newDataset; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6431 $"); } } /** Utility class to store the instances in a resultset */ protected class Resultset implements RevisionHandler { /** the template */ Instance m_Template; /** the dataset */ FastVector m_Datasets; /** * Constructir * * @param template the template */ public Resultset(Instance template) { m_Template = template; m_Datasets = new FastVector(); add(template); } /** * Returns true if the two instances match on those attributes that have * been designated key columns (eg: scheme name and scheme options) * * @param first the first instance * @return true if first and second match on the currently set key columns */ protected boolean matchesTemplate(Instance first) { for (int i = 0; i < m_ResultsetKeyColumns.length; i++) { if (first.value(m_ResultsetKeyColumns[i]) != m_Template.value(m_ResultsetKeyColumns[i])) { return false; } } return true; } /** * Returns a string descriptive of the resultset key column values * for this resultset * * @return a value of type 'String' */ protected String templateString() { String result = ""; String tempResult = ""; for (int i = 0; i < m_ResultsetKeyColumns.length; i++) { tempResult = m_Template.toString(m_ResultsetKeyColumns[i]) + ' '; // compact the string tempResult = Utils.removeSubstring(tempResult, "weka.classifiers."); tempResult = Utils.removeSubstring(tempResult, "weka.filters."); tempResult = Utils.removeSubstring(tempResult, "weka.attributeSelection."); result += tempResult; } return result.trim(); } /** * Returns a vector containing all instances belonging to one dataset. * * @param inst a template instance * @return a value of type 'FastVector' */ public FastVector dataset(Instance inst) { for (int i = 0; i < m_Datasets.size(); i++) { if (((Dataset)m_Datasets.elementAt(i)).matchesTemplate(inst)) { return ((Dataset)m_Datasets.elementAt(i)).contents(); } } return null; } /** * Adds an instance to this resultset * * @param newInst a value of type 'Instance' */ public void add(Instance newInst) { for (int i = 0; i < m_Datasets.size(); i++) { if (((Dataset)m_Datasets.elementAt(i)).matchesTemplate(newInst)) { ((Dataset)m_Datasets.elementAt(i)).add(newInst); return; } } Dataset newDataset = new Dataset(newInst); m_Datasets.addElement(newDataset); } /** * Sorts the instances in each dataset by the run number. * * @param runColumn a value of type 'int' */ public void sort(int runColumn) { for (int i = 0; i < m_Datasets.size(); i++) { ((Dataset)m_Datasets.elementAt(i)).sort(runColumn); } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6431 $"); } } // Resultset /** * Returns a string descriptive of the key column values for * the "datasets * * @param template the template * @return a value of type 'String' */ protected String templateString(Instance template) { String result = ""; for (int i = 0; i < m_DatasetKeyColumns.length; i++) { result += template.toString(m_DatasetKeyColumns[i]) + ' '; } if (result.startsWith("weka.classifiers.")) { result = result.substring("weka.classifiers.".length()); } return result.trim(); } /** * Sets the matrix to use to produce the output. * @param matrix the instance to use to produce the output * @see ResultMatrix */ public void setResultMatrix(ResultMatrix matrix) { m_ResultMatrix = matrix; } /** * Gets the instance that produces the output. * @return the instance to produce the output */ public ResultMatrix getResultMatrix() { return m_ResultMatrix; } /** * Set whether standard deviations are displayed or not. * @param s true if standard deviations are to be displayed */ public void setShowStdDevs(boolean s) { m_ShowStdDevs = s; } /** * Returns true if standard deviations have been requested. * @return true if standard deviations are to be displayed. */ public boolean getShowStdDevs() { return m_ShowStdDevs; } /** * Separates the instances into resultsets and by dataset/run. * * @throws Exception if the TTest parameters have not been set. */ protected void prepareData() throws Exception { if (m_Instances == null) { throw new Exception("No instances have been set"); } if (m_RunColumnSet == -1) { m_RunColumn = m_Instances.numAttributes() - 1; } else { m_RunColumn = m_RunColumnSet; } if (m_ResultsetKeyColumnsRange == null) { throw new Exception("No result specifier columns have been set"); } m_ResultsetKeyColumnsRange.setUpper(m_Instances.numAttributes() - 1); m_ResultsetKeyColumns = m_ResultsetKeyColumnsRange.getSelection(); if (m_DatasetKeyColumnsRange == null) { throw new Exception("No dataset specifier columns have been set"); } m_DatasetKeyColumnsRange.setUpper(m_Instances.numAttributes() - 1); m_DatasetKeyColumns = m_DatasetKeyColumnsRange.getSelection(); // Split the data up into result sets m_Resultsets.removeAllElements(); m_DatasetSpecifiers.removeAllSpecifiers(); for (int i = 0; i < m_Instances.numInstances(); i++) { Instance current = m_Instances.instance(i); if (current.isMissing(m_RunColumn)) { throw new Exception("Instance has missing value in run " + "column!\n" + current); } for (int j = 0; j < m_ResultsetKeyColumns.length; j++) { if (current.isMissing(m_ResultsetKeyColumns[j])) { throw new Exception("Instance has missing value in resultset key " + "column " + (m_ResultsetKeyColumns[j] + 1) + "!\n" + current); } } for (int j = 0; j < m_DatasetKeyColumns.length; j++) { if (current.isMissing(m_DatasetKeyColumns[j])) { throw new Exception("Instance has missing value in dataset key " + "column " + (m_DatasetKeyColumns[j] + 1) + "!\n" + current); } } boolean found = false; for (int j = 0; j < m_Resultsets.size(); j++) { Resultset resultset = (Resultset) m_Resultsets.elementAt(j); if (resultset.matchesTemplate(current)) { resultset.add(current); found = true; break; } } if (!found) { Resultset resultset = new Resultset(current); m_Resultsets.addElement(resultset); } m_DatasetSpecifiers.add(current); } // Tell each resultset to sort on the run column for (int j = 0; j < m_Resultsets.size(); j++) { Resultset resultset = (Resultset) m_Resultsets.elementAt(j); if (m_FoldColumn >= 0) { // sort on folds first in case they are out of order resultset.sort(m_FoldColumn); } resultset.sort(m_RunColumn); } m_ResultsetsValid = true; } /** * Gets the number of datasets in the resultsets * * @return the number of datasets in the resultsets */ public int getNumDatasets() { if (!m_ResultsetsValid) { try { prepareData(); } catch (Exception ex) { ex.printStackTrace(); return 0; } } return m_DatasetSpecifiers.numSpecifiers(); } /** * Gets the number of resultsets in the data. * * @return the number of resultsets in the data */ public int getNumResultsets() { if (!m_ResultsetsValid) { try { prepareData(); } catch (Exception ex) { ex.printStackTrace(); return 0; } } return m_Resultsets.size(); } /** * Gets a string descriptive of the specified resultset. * * @param index the index of the resultset * @return a descriptive string for the resultset */ public String getResultsetName(int index) { if (!m_ResultsetsValid) { try { prepareData(); } catch (Exception ex) { ex.printStackTrace(); return null; } } return ((Resultset) m_Resultsets.elementAt(index)).templateString(); } /** * Checks whether the resultset with the given index shall be displayed. * * @param index the index of the resultset to check whether it shall be displayed * @return whether the specified resultset is displayed */ public boolean displayResultset(int index) { boolean result; int i; result = true; if (m_DisplayedResultsets != null) { result = false; for (i = 0; i < m_DisplayedResultsets.length; i++) { if (m_DisplayedResultsets[i] == index) { result = true; break; } } } return result; } /** * Computes a paired t-test comparison for a specified dataset between * two resultsets. * * @param datasetSpecifier the dataset specifier * @param resultset1Index the index of the first resultset * @param resultset2Index the index of the second resultset * @param comparisonColumn the column containing values to compare * @return the results of the paired comparison * @throws Exception if an error occurs */ public PairedStats calculateStatistics(Instance datasetSpecifier, int resultset1Index, int resultset2Index, int comparisonColumn) throws Exception { if (m_Instances.attribute(comparisonColumn).type() != Attribute.NUMERIC) { throw new Exception("Comparison column " + (comparisonColumn + 1) + " (" + m_Instances.attribute(comparisonColumn).name() + ") is not numeric"); } if (!m_ResultsetsValid) { prepareData(); } Resultset resultset1 = (Resultset) m_Resultsets.elementAt(resultset1Index); Resultset resultset2 = (Resultset) m_Resultsets.elementAt(resultset2Index); FastVector dataset1 = resultset1.dataset(datasetSpecifier); FastVector dataset2 = resultset2.dataset(datasetSpecifier); String datasetName = templateString(datasetSpecifier); if (dataset1 == null) { throw new Exception("No results for dataset=" + datasetName + " for resultset=" + resultset1.templateString()); } else if (dataset2 == null) { throw new Exception("No results for dataset=" + datasetName + " for resultset=" + resultset2.templateString()); } else if (dataset1.size() != dataset2.size()) { throw new Exception("Results for dataset=" + datasetName + " differ in size for resultset=" + resultset1.templateString() + " and resultset=" + resultset2.templateString() ); } PairedStats pairedStats = new PairedStats(m_SignificanceLevel); for (int k = 0; k < dataset1.size(); k ++) { Instance current1 = (Instance) dataset1.elementAt(k); Instance current2 = (Instance) dataset2.elementAt(k); if (current1.isMissing(comparisonColumn)) { System.err.println("Instance has missing value in comparison " + "column!\n" + current1); continue; } if (current2.isMissing(comparisonColumn)) { System.err.println("Instance has missing value in comparison " + "column!\n" + current2); continue; } if (current1.value(m_RunColumn) != current2.value(m_RunColumn)) { System.err.println("Run numbers do not match!\n" + current1 + current2); } if (m_FoldColumn != -1) { if (current1.value(m_FoldColumn) != current2.value(m_FoldColumn)) { System.err.println("Fold numbers do not match!\n" + current1 + current2); } } double value1 = current1.value(comparisonColumn); double value2 = current2.value(comparisonColumn); pairedStats.add(value1, value2); } pairedStats.calculateDerived(); //System.err.println("Differences stats:\n" + pairedStats.differencesStats); return pairedStats; } /** * Creates a key that maps resultset numbers to their descriptions. * * @return a value of type 'String' */ public String resultsetKey() { if (!m_ResultsetsValid) { try { prepareData(); } catch (Exception ex) { ex.printStackTrace(); return ex.getMessage(); } } String result = ""; for (int j = 0; j < getNumResultsets(); j++) { result += "(" + (j + 1) + ") " + getResultsetName(j) + '\n'; } return result + '\n'; } /** * Creates a "header" string describing the current resultsets. * * @param comparisonColumn a value of type 'int' * @return a value of type 'String' */ public String header(int comparisonColumn) { if (!m_ResultsetsValid) { try { prepareData(); } catch (Exception ex) { ex.printStackTrace(); return ex.getMessage(); } } initResultMatrix(); m_ResultMatrix.addHeader("Tester", getClass().getName()); m_ResultMatrix.addHeader("Analysing", m_Instances.attribute(comparisonColumn).name()); m_ResultMatrix.addHeader("Datasets", Integer.toString(getNumDatasets())); m_ResultMatrix.addHeader("Resultsets", Integer.toString(getNumResultsets())); m_ResultMatrix.addHeader("Confidence", getSignificanceLevel() + " (two tailed)"); m_ResultMatrix.addHeader("Sorted by", getSortColumnName()); m_ResultMatrix.addHeader("Date", (new SimpleDateFormat()).format(new Date())); return m_ResultMatrix.toStringHeader() + "\n"; } /** * Carries out a comparison between all resultsets, counting the number * of datsets where one resultset outperforms the other. * * @param comparisonColumn the index of the comparison column * @param nonSigWin for storing the non-significant wins * @return a 2d array where element [i][j] is the number of times resultset * j performed significantly better than resultset i. * @throws Exception if an error occurs */ public int [][] multiResultsetWins(int comparisonColumn, int [][] nonSigWin) throws Exception { int numResultsets = getNumResultsets(); int [][] win = new int [numResultsets][numResultsets]; // int [][] nonSigWin = new int [numResultsets][numResultsets]; for (int i = 0; i < numResultsets; i++) { for (int j = i + 1; j < numResultsets; j++) { System.err.print("Comparing (" + (i + 1) + ") with (" + (j + 1) + ")\r"); System.err.flush(); for (int k = 0; k < getNumDatasets(); k++) { try { PairedStats pairedStats = calculateStatistics(m_DatasetSpecifiers.specifier(k), i, j, comparisonColumn); if (pairedStats.differencesSignificance < 0) { win[i][j]++; } else if (pairedStats.differencesSignificance > 0) { win[j][i]++; } if (pairedStats.differencesStats.mean < 0) { nonSigWin[i][j]++; } else if (pairedStats.differencesStats.mean > 0) { nonSigWin[j][i]++; } } catch (Exception ex) { //ex.printStackTrace(); System.err.println(ex.getMessage()); } } } } return win; } /** * clears the content and fills the column and row names according to the * given sorting */ protected void initResultMatrix() { m_ResultMatrix.setSize(getNumResultsets(), getNumDatasets()); m_ResultMatrix.setShowStdDev(m_ShowStdDevs); for (int i = 0; i < getNumDatasets(); i++) m_ResultMatrix.setRowName(i, templateString(m_DatasetSpecifiers.specifier(i))); for (int j = 0; j < getNumResultsets(); j++) { m_ResultMatrix.setColName(j, getResultsetName(j)); m_ResultMatrix.setColHidden(j, !displayResultset(j)); } } /** * Carries out a comparison between all resultsets, counting the number * of datsets where one resultset outperforms the other. The results * are summarized in a table. * * @param comparisonColumn the index of the comparison column * @return the results in a string * @throws Exception if an error occurs */ public String multiResultsetSummary(int comparisonColumn) throws Exception { int[][] nonSigWin = new int [getNumResultsets()][getNumResultsets()]; int[][] win = multiResultsetWins(comparisonColumn, nonSigWin); initResultMatrix(); m_ResultMatrix.setSummary(nonSigWin, win); return m_ResultMatrix.toStringSummary(); } /** * returns a ranking of the resultsets * * @param comparisonColumn the column to compare with * @return the ranking * @throws Exception if something goes wrong */ public String multiResultsetRanking(int comparisonColumn) throws Exception { int[][] nonSigWin = new int [getNumResultsets()][getNumResultsets()]; int[][] win = multiResultsetWins(comparisonColumn, nonSigWin); initResultMatrix(); m_ResultMatrix.setRanking(win); return m_ResultMatrix.toStringRanking(); } /** * Creates a comparison table where a base resultset is compared to the * other resultsets. Results are presented for every dataset. * * @param baseResultset the index of the base resultset * @param comparisonColumn the index of the column to compare over * @return the comparison table string * @throws Exception if an error occurs */ public String multiResultsetFull(int baseResultset, int comparisonColumn) throws Exception { int maxWidthMean = 2; int maxWidthStdDev = 2; double[] sortValues = new double[getNumDatasets()]; // determine max field width for (int i = 0; i < getNumDatasets(); i++) { sortValues[i] = Double.POSITIVE_INFINITY; // sorts skipped cols to end for (int j = 0; j < getNumResultsets(); j++) { if (!displayResultset(j)) continue; try { PairedStats pairedStats = calculateStatistics(m_DatasetSpecifiers.specifier(i), baseResultset, j, comparisonColumn); if (!Double.isInfinite(pairedStats.yStats.mean) && !Double.isNaN(pairedStats.yStats.mean)) { double width = ((Math.log(Math.abs(pairedStats.yStats.mean)) / Math.log(10))+1); if (width > maxWidthMean) { maxWidthMean = (int)width; } } if (j == baseResultset) { if (getSortColumn() != -1) sortValues[i] = calculateStatistics( m_DatasetSpecifiers.specifier(i), baseResultset, j, getSortColumn()).xStats.mean; else sortValues[i] = i; } if (m_ShowStdDevs && !Double.isInfinite(pairedStats.yStats.stdDev) && !Double.isNaN(pairedStats.yStats.stdDev)) { double width = ((Math.log(Math.abs(pairedStats.yStats.stdDev)) / Math.log(10))+1); if (width > maxWidthStdDev) { maxWidthStdDev = (int)width; } } } catch (Exception ex) { //ex.printStackTrace(); System.err.println(ex); } } } // sort rows according to sort column m_SortOrder = Utils.sort(sortValues); // determine column order m_ColOrder = new int[getNumResultsets()]; m_ColOrder[0] = baseResultset; int index = 1; for (int i = 0; i < getNumResultsets(); i++) { if (i == baseResultset) continue; m_ColOrder[index] = i; index++; } // setup matrix initResultMatrix(); m_ResultMatrix.setRowOrder(m_SortOrder); m_ResultMatrix.setColOrder(m_ColOrder); m_ResultMatrix.setMeanWidth(maxWidthMean); m_ResultMatrix.setStdDevWidth(maxWidthStdDev); m_ResultMatrix.setSignificanceWidth(1); // make sure that test base is displayed, even though it might not be // selected for (int i = 0; i < m_ResultMatrix.getColCount(); i++) { if ( (i == baseResultset) && (m_ResultMatrix.getColHidden(i)) ) { m_ResultMatrix.setColHidden(i, false); System.err.println("Note: test base was hidden - set visible!"); } } // the data for (int i = 0; i < getNumDatasets(); i++) { m_ResultMatrix.setRowName(i, templateString(m_DatasetSpecifiers.specifier(i))); for (int j = 0; j < getNumResultsets(); j++) { try { // calc stats PairedStats pairedStats = calculateStatistics(m_DatasetSpecifiers.specifier(i), baseResultset, j, comparisonColumn); // count m_ResultMatrix.setCount(i, pairedStats.count); // mean m_ResultMatrix.setMean(j, i, pairedStats.yStats.mean); // std dev m_ResultMatrix.setStdDev(j, i, pairedStats.yStats.stdDev); // significance if (pairedStats.differencesSignificance < 0) m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_WIN); else if (pairedStats.differencesSignificance > 0) m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_LOSS); else m_ResultMatrix.setSignificance(j, i, ResultMatrix.SIGNIFICANCE_TIE); } catch (Exception e) { //e.printStackTrace(); System.err.println(e); } } } // generate output StringBuffer result = new StringBuffer(1000); try { result.append(m_ResultMatrix.toStringMatrix()); } catch (Exception e) { e.printStackTrace(); } // append a key so that we can tell the difference between long // scheme+option names result.append("\n\n" + m_ResultMatrix.toStringKey()); return result.toString(); } /** * Lists options understood by this object. * * @return an enumeration of Options. */ public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option( "\tSpecify list of columns that specify a unique\n" + "\tdataset.\n" + "\tFirst and last are valid indexes. (default none)", "D", 1, "-D ")); newVector.addElement(new Option( "\tSet the index of the column containing the run number", "R", 1, "-R ")); newVector.addElement(new Option( "\tSet the index of the column containing the fold number", "F", 1, "-F ")); newVector.addElement(new Option( "\tSpecify list of columns that specify a unique\n" + "\t'result generator' (eg: classifier name and options).\n" + "\tFirst and last are valid indexes. (default none)", "G", 1, "-G ")); newVector.addElement(new Option( "\tSet the significance level for comparisons (default 0.05)", "S", 1, "-S ")); newVector.addElement(new Option( "\tShow standard deviations", "V", 0, "-V")); newVector.addElement(new Option( "\tProduce table comparisons in Latex table format", "L", 0, "-L")); newVector.addElement(new Option( "\tProduce table comparisons in CSV table format", "csv", 0, "-csv")); newVector.addElement(new Option( "\tProduce table comparisons in HTML table format", "html", 0, "-html")); newVector.addElement(new Option( "\tProduce table comparisons with only the significance values", "significance", 0, "-significance")); newVector.addElement(new Option( "\tProduce table comparisons output suitable for GNUPlot", "gnuplot", 0, "-gnuplot")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D <index,index2-index4,...>
   *  Specify list of columns that specify a unique
   *  dataset.
   *  First and last are valid indexes. (default none)
* *
 -R <index>
   *  Set the index of the column containing the run number
* *
 -F <index>
   *  Set the index of the column containing the fold number
* *
 -G <index1,index2-index4,...>
   *  Specify list of columns that specify a unique
   *  'result generator' (eg: classifier name and options).
   *  First and last are valid indexes. (default none)
* *
 -S <significance level>
   *  Set the significance level for comparisons (default 0.05)
* *
 -V
   *  Show standard deviations
* *
 -L
   *  Produce table comparisons in Latex table format
* *
 -csv
   *  Produce table comparisons in CSV table format
* *
 -html
   *  Produce table comparisons in HTML table format
* *
 -significance
   *  Produce table comparisons with only the significance values
* *
 -gnuplot
   *  Produce table comparisons output suitable for GNUPlot
* * * @param options an array containing options to set. * @throws Exception if invalid options are given */ public void setOptions(String[] options) throws Exception { setShowStdDevs(Utils.getFlag('V', options)); if (Utils.getFlag('L', options)) setResultMatrix(new ResultMatrixLatex()); if (Utils.getFlag("csv", options)) setResultMatrix(new ResultMatrixCSV()); if (Utils.getFlag("html", options)) setResultMatrix(new ResultMatrixHTML()); if (Utils.getFlag("significance", options)) setResultMatrix(new ResultMatrixSignificance()); String datasetList = Utils.getOption('D', options); Range datasetRange = new Range(); if (datasetList.length() != 0) { datasetRange.setRanges(datasetList); } setDatasetKeyColumns(datasetRange); String indexStr = Utils.getOption('R', options); if (indexStr.length() != 0) { if (indexStr.equals("first")) { setRunColumn(0); } else if (indexStr.equals("last")) { setRunColumn(-1); } else { setRunColumn(Integer.parseInt(indexStr) - 1); } } else { setRunColumn(-1); } String foldStr = Utils.getOption('F', options); if (foldStr.length() != 0) { setFoldColumn(Integer.parseInt(foldStr) - 1); } else { setFoldColumn(-1); } String sigStr = Utils.getOption('S', options); if (sigStr.length() != 0) { setSignificanceLevel((new Double(sigStr)).doubleValue()); } else { setSignificanceLevel(0.05); } String resultsetList = Utils.getOption('G', options); Range generatorRange = new Range(); if (resultsetList.length() != 0) { generatorRange.setRanges(resultsetList); } setResultsetKeyColumns(generatorRange); } /** * Gets current settings of the PairedTTester. * * @return an array of strings containing current options. */ public String[] getOptions() { String [] options = new String [11]; int current = 0; if (!getResultsetKeyColumns().getRanges().equals("")) { options[current++] = "-G"; options[current++] = getResultsetKeyColumns().getRanges(); } if (!getDatasetKeyColumns().getRanges().equals("")) { options[current++] = "-D"; options[current++] = getDatasetKeyColumns().getRanges(); } options[current++] = "-R"; options[current++] = "" + (getRunColumn() + 1); options[current++] = "-S"; options[current++] = "" + getSignificanceLevel(); if (getShowStdDevs()) { options[current++] = "-V"; } if (getResultMatrix() instanceof ResultMatrixLatex) options[current++] = "-L"; if (getResultMatrix() instanceof ResultMatrixCSV) options[current++] = "-csv"; if (getResultMatrix() instanceof ResultMatrixHTML) options[current++] = "-html"; if (getResultMatrix() instanceof ResultMatrixSignificance) options[current++] = "-significance"; while (current < options.length) { options[current++] = ""; } return options; } /** * Get the value of ResultsetKeyColumns. * * @return Value of ResultsetKeyColumns. */ public Range getResultsetKeyColumns() { return m_ResultsetKeyColumnsRange; } /** * Set the value of ResultsetKeyColumns. * * @param newResultsetKeyColumns Value to assign to ResultsetKeyColumns. */ public void setResultsetKeyColumns(Range newResultsetKeyColumns) { m_ResultsetKeyColumnsRange = newResultsetKeyColumns; m_ResultsetsValid = false; } /** * Gets the indices of the the datasets that are displayed (if null * then all are displayed). The base is always displayed. * * @return the indices of the datasets to display */ public int[] getDisplayedResultsets() { return m_DisplayedResultsets; } /** * Sets the indicies of the datasets to display (null means all). * The base is always displayed. * * @param cols the indices of the datasets to display */ public void setDisplayedResultsets(int[] cols) { m_DisplayedResultsets = cols; } /** * Get the value of SignificanceLevel. * * @return Value of SignificanceLevel. */ public double getSignificanceLevel() { return m_SignificanceLevel; } /** * Set the value of SignificanceLevel. * * @param newSignificanceLevel Value to assign to SignificanceLevel. */ public void setSignificanceLevel(double newSignificanceLevel) { m_SignificanceLevel = newSignificanceLevel; } /** * Get the value of DatasetKeyColumns. * * @return Value of DatasetKeyColumns. */ public Range getDatasetKeyColumns() { return m_DatasetKeyColumnsRange; } /** * Set the value of DatasetKeyColumns. * * @param newDatasetKeyColumns Value to assign to DatasetKeyColumns. */ public void setDatasetKeyColumns(Range newDatasetKeyColumns) { m_DatasetKeyColumnsRange = newDatasetKeyColumns; m_ResultsetsValid = false; } /** * Get the value of RunColumn. * * @return Value of RunColumn. */ public int getRunColumn() { return m_RunColumnSet; } /** * Set the value of RunColumn. * * @param newRunColumn Value to assign to RunColumn. */ public void setRunColumn(int newRunColumn) { m_RunColumnSet = newRunColumn; m_ResultsetsValid = false; } /** * Get the value of FoldColumn. * * @return Value of FoldColumn. */ public int getFoldColumn() { return m_FoldColumn; } /** * Set the value of FoldColumn. * * @param newFoldColumn Value to assign to FoldColumn. */ public void setFoldColumn(int newFoldColumn) { m_FoldColumn = newFoldColumn; m_ResultsetsValid = false; } /** * Returns the name of the column to sort on. * * @return the name of the column to sort on. */ public String getSortColumnName() { if (getSortColumn() == -1) return "-"; else return m_Instances.attribute(getSortColumn()).name(); } /** * Returns the column to sort on, -1 means the default sorting. * * @return the column to sort on. */ public int getSortColumn() { return m_SortColumn; } /** * Set the column to sort on, -1 means the default sorting. * * @param newSortColumn the new sort column. */ public void setSortColumn(int newSortColumn) { if (newSortColumn >= -1) m_SortColumn = newSortColumn; } /** * Get the value of Instances. * * @return Value of Instances. */ public Instances getInstances() { return m_Instances; } /** * Set the value of Instances. * * @param newInstances Value to assign to Instances. */ public void setInstances(Instances newInstances) { m_Instances = newInstances; m_ResultsetsValid = false; } /** * retrieves all the settings from the given Tester * * @param tester the Tester to get the settings from */ public void assign(Tester tester) { setInstances(tester.getInstances()); setResultMatrix(tester.getResultMatrix()); setShowStdDevs(tester.getShowStdDevs()); setResultsetKeyColumns(tester.getResultsetKeyColumns()); setDisplayedResultsets(tester.getDisplayedResultsets()); setSignificanceLevel(tester.getSignificanceLevel()); setDatasetKeyColumns(tester.getDatasetKeyColumns()); setRunColumn(tester.getRunColumn()); setFoldColumn(tester.getFoldColumn()); setSortColumn(tester.getSortColumn()); } /** * returns a string that is displayed as tooltip on the "perform test" * button in the experimenter * * @return the tool tip */ public String getToolTipText() { return "Performs test using t-test statistic"; } /** * returns the name of the tester * * @return the display name */ public String getDisplayName() { return "Paired T-Tester"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6431 $"); } /** * Test the class from the command line. * * @param args contains options for the instance ttests */ public static void main(String args[]) { try { PairedTTester tt = new PairedTTester(); String datasetName = Utils.getOption('t', args); String compareColStr = Utils.getOption('c', args); String baseColStr = Utils.getOption('b', args); boolean summaryOnly = Utils.getFlag('s', args); boolean rankingOnly = Utils.getFlag('r', args); try { if ((datasetName.length() == 0) || (compareColStr.length() == 0)) { throw new Exception("-t and -c options are required"); } tt.setOptions(args); Utils.checkForRemainingOptions(args); } catch (Exception ex) { String result = ""; Enumeration enu = tt.listOptions(); while (enu.hasMoreElements()) { Option option = (Option) enu.nextElement(); result += option.synopsis() + '\n' + option.description() + '\n'; } throw new Exception( "Usage:\n\n" + "-t \n" + "\tSet the dataset containing data to evaluate\n" + "-b \n" + "\tSet the resultset to base comparisons against (optional)\n" + "-c \n" + "\tSet the column to perform a comparison on\n" + "-s\n" + "\tSummarize wins over all resultset pairs\n\n" + "-r\n" + "\tGenerate a resultset ranking\n\n" + result); } Instances data = new Instances(new BufferedReader( new FileReader(datasetName))); tt.setInstances(data); // tt.prepareData(); int compareCol = Integer.parseInt(compareColStr) - 1; System.out.println(tt.header(compareCol)); if (rankingOnly) { System.out.println(tt.multiResultsetRanking(compareCol)); } else if (summaryOnly) { System.out.println(tt.multiResultsetSummary(compareCol)); } else { System.out.println(tt.resultsetKey()); if (baseColStr.length() == 0) { for (int i = 0; i < tt.getNumResultsets(); i++) { if (!tt.displayResultset(i)) continue; System.out.println(tt.multiResultsetFull(i, compareCol)); } } else { int baseCol = Integer.parseInt(baseColStr) - 1; System.out.println(tt.multiResultsetFull(baseCol, compareCol)); } } } catch(Exception e) { e.printStackTrace(); System.err.println(e.getMessage()); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy