All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.RandomSplitResultProducer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    RandomSplitResultProducer.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */


package weka.experiment;

import weka.core.AdditionalMeasureProducer;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.io.File;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.Random;
import java.util.TimeZone;
import java.util.Vector;

/**
 
 * Generates a single train/test split and calls the appropriate SplitEvaluator to generate some results.
 * 

* * Valid options are:

* *

 -P <percent>
 *  The percentage of instances to use for training.
 *  (default 66)
* *
 -D
 * Save raw split evaluator output.
* *
 -O <file/directory name/path>
 *  The filename where raw output will be stored.
 *  If a directory name is specified then then individual
 *  outputs will be gzipped, otherwise all output will be
 *  zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)
* *
 -W <class name>
 *  The full class name of a SplitEvaluator.
 *  eg: weka.experiment.ClassifierSplitEvaluator
* *
 -R
 *  Set when data is not to be randomized and the data sets' size.
 *  Is not to be determined via probabilistic rounding.
* *
 
 * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator:
 * 
* *
 -W <class name>
 *  The full class name of the classifier.
 *  eg: weka.classifiers.bayes.NaiveBayes
* *
 -C <index>
 *  The index of the class for which IR statistics
 *  are to be output. (default 1)
* *
 -I <index>
 *  The index of an attribute to output in the
 *  results. This attribute should identify an
 *  instance in order to know which instances are
 *  in the test set of a cross validation. if 0
 *  no output (default 0).
* *
 -P
 *  Add target and prediction columns to the result
 *  for each fold.
* *
 
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * All options after -- will be passed to the split evaluator. * * @author Len Trigg ([email protected]) * @version $Revision: 6255 $ */ public class RandomSplitResultProducer implements ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = 1403798165056795073L; /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The percentage of instances to use for training */ protected double m_TrainPercent = 66; /** Whether dataset is to be randomized */ protected boolean m_randomize = true; /** The SplitEvaluator used to generate results */ protected SplitEvaluator m_SplitEvaluator = new ClassifierSplitEvaluator(); /** The names of any additional measures to look for in SplitEvaluators */ protected String [] m_AdditionalMeasures = null; /** Save raw output of split evaluators --- for debugging purposes */ protected boolean m_debugOutput = false; /** The output zipper to use for saving raw splitEvaluator output */ protected OutputZipper m_ZipDest = null; /** The destination output file/directory for raw output */ protected File m_OutputFile = new File( new File(System.getProperty("user.dir")), "splitEvalutorOut.zip"); /** The name of the key field containing the dataset name */ public static String DATASET_FIELD_NAME = "Dataset"; /** The name of the key field containing the run number */ public static String RUN_FIELD_NAME = "Run"; /** The name of the result field containing the timestamp */ public static String TIMESTAMP_FIELD_NAME = "Date_time"; /** * Returns a string describing this result producer * @return a description of the result producer suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Generates a single train/test split and calls the appropriate " + "SplitEvaluator to generate some results."; } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ public void setInstances(Instances instances) { m_Instances = instances; } /** * Set a list of method names for additional measures to look for * in SplitEvaluators. This could contain many measures (of which only a * subset may be produceable by the current SplitEvaluator) if an experiment * is the type that iterates over a set of properties. * @param additionalMeasures an array of measure names, null if none */ public void setAdditionalMeasures(String [] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_SplitEvaluator != null) { System.err.println("RandomSplitResultProducer: setting additional " +"measures for " +"split evaluator"); m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be * in the SplitEvaluator * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(); if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_SplitEvaluator). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer)m_SplitEvaluator). getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("RandomSplitResultProducer: " +"Can't return value for : "+additionalMeasureName +". "+m_SplitEvaluator.getClass().getName()+" " +"is not an AdditionalMeasureProducer"); } } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Gets a Double representing the current date and time. * eg: 1:46pm on 20/5/1999 -> 19990520.1346 * * @return a value of type Double */ public static Double getTimestamp() { Calendar now = Calendar.getInstance(TimeZone.getTimeZone("UTC")); double timestamp = now.get(Calendar.YEAR) * 10000 + (now.get(Calendar.MONTH) + 1) * 100 + now.get(Calendar.DAY_OF_MONTH) + now.get(Calendar.HOUR_OF_DAY) / 100.0 + now.get(Calendar.MINUTE) / 10000.0; return new Double(timestamp); } /** * Prepare to generate results. * * @throws Exception if an error occurs during preprocessing. */ public void preProcess() throws Exception { if (m_SplitEvaluator == null) { throw new Exception("No SplitEvalutor set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Perform any postprocessing. When this method is called, it indicates * that no more requests to generate results for the current experiment * will be sent. * * @throws Exception if an error occurs */ public void postProcess() throws Exception { m_ResultListener.postProcess(this); if (m_debugOutput) { if (m_ZipDest != null) { m_ZipDest.finished(); m_ZipDest = null; } } } /** * Gets the keys for a specified run number. Different run * numbers correspond to different randomizations of the data. Keys * produced should be sent to the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ public void doRunKeys(int run) throws Exception { if (m_Instances == null) { throw new Exception("No Instances set"); } // Add in some fields to the key like run number, dataset name Object [] seKey = m_SplitEvaluator.getKey(); Object [] key = new Object [seKey.length + 2]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; System.arraycopy(seKey, 0, key, 2, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { try { m_ResultListener.acceptResult(this, key, null); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Gets the results for a specified run number. Different run * numbers correspond to different randomizations of the data. Results * produced should be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ public void doRun(int run) throws Exception { if (getRawOutput()) { if (m_ZipDest == null) { m_ZipDest = new OutputZipper(m_OutputFile); } } if (m_Instances == null) { throw new Exception("No Instances set"); } // Add in some fields to the key like run number, dataset name Object [] seKey = m_SplitEvaluator.getKey(); Object [] key = new Object [seKey.length + 2]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; System.arraycopy(seKey, 0, key, 2, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); Instances train; Instances test; if (!m_randomize) { // Don't do any randomization int trainSize = Utils.round(runInstances.numInstances() * m_TrainPercent / 100); int testSize = runInstances.numInstances() - trainSize; train = new Instances(runInstances, 0, trainSize); test = new Instances(runInstances, trainSize, testSize); } else { Random rand = new Random(run); runInstances.randomize(rand); // Nominal class if (runInstances.classAttribute().isNominal()) { // create the subset for each classs int numClasses = runInstances.numClasses(); Instances[] subsets = new Instances[numClasses + 1]; for (int i=0; i < numClasses + 1; i++) { subsets[i] = new Instances(runInstances, 10); } // divide instances into subsets Enumeration e = runInstances.enumerateInstances(); while(e.hasMoreElements()) { Instance inst = (Instance) e.nextElement(); if (inst.classIsMissing()) { subsets[numClasses].add(inst); } else { subsets[(int) inst.classValue()].add(inst); } } // Compactify them for (int i=0; i < numClasses + 1; i++) { subsets[i].compactify(); } // merge into train and test sets train = new Instances(runInstances, runInstances.numInstances()); test = new Instances(runInstances, runInstances.numInstances()); for (int i = 0; i < numClasses + 1; i++) { int trainSize = Utils.probRound(subsets[i].numInstances() * m_TrainPercent / 100, rand); for (int j = 0; j < trainSize; j++) { train.add(subsets[i].instance(j)); } for (int j = trainSize; j < subsets[i].numInstances(); j++) { test.add(subsets[i].instance(j)); } // free memory subsets[i] = null; } train.compactify(); test.compactify(); // randomize the final sets train.randomize(rand); test.randomize(rand); } else { // Numeric target int trainSize = Utils.probRound(runInstances.numInstances() * m_TrainPercent / 100, rand); int testSize = runInstances.numInstances() - trainSize; train = new Instances(runInstances, 0, trainSize); test = new Instances(runInstances, trainSize, testSize); } } try { Object [] seResults = m_SplitEvaluator.getResult(train, test); Object [] results = new Object [seResults.length + 1]; results[0] = getTimestamp(); System.arraycopy(seResults, 0, results, 1, seResults.length); if (m_debugOutput) { String resultName = (""+run+"."+ Utils.backQuoteChars(runInstances.relationName()) +"." +m_SplitEvaluator.toString()).replace(' ','_'); resultName = Utils.removeSubstring(resultName, "weka.classifiers."); resultName = Utils.removeSubstring(resultName, "weka.filters."); resultName = Utils.removeSubstring(resultName, "weka.attributeSelection."); m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); } m_ResultListener.acceptResult(this, key, results); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Gets the names of each of the columns produced for a single run. * This method should really be static. * * @return an array containing the name of each column */ public String [] getKeyNames() { String [] keyNames = m_SplitEvaluator.getKeyNames(); // Add in the names of our extra key fields String [] newKeyNames = new String [keyNames.length + 2]; newKeyNames[0] = DATASET_FIELD_NAME; newKeyNames[1] = RUN_FIELD_NAME; System.arraycopy(keyNames, 0, newKeyNames, 2, keyNames.length); return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. * This method should really be static. * * @return an array containing objects of the type of each column. The * objects should be Strings, or Doubles. */ public Object [] getKeyTypes() { Object [] keyTypes = m_SplitEvaluator.getKeyTypes(); // Add in the types of our extra fields Object [] newKeyTypes = new String [keyTypes.length + 2]; newKeyTypes[0] = new String(); newKeyTypes[1] = new String(); System.arraycopy(keyTypes, 0, newKeyTypes, 2, keyTypes.length); return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. * This method should really be static. * * @return an array containing the name of each column */ public String [] getResultNames() { String [] resultNames = m_SplitEvaluator.getResultNames(); // Add in the names of our extra Result fields String [] newResultNames = new String [resultNames.length + 1]; newResultNames[0] = TIMESTAMP_FIELD_NAME; System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); return newResultNames; } /** * Gets the data types of each of the columns produced for a single run. * This method should really be static. * * @return an array containing objects of the type of each column. The * objects should be Strings, or Doubles. */ public Object [] getResultTypes() { Object [] resultTypes = m_SplitEvaluator.getResultTypes(); // Add in the types of our extra Result fields Object [] newResultTypes = new Object [resultTypes.length + 1]; newResultTypes[0] = new Double(0); System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); return newResultTypes; } /** * Gets a description of the internal settings of the result * producer, sufficient for distinguishing a ResultProducer * instance from another with different settings (ignoring * those settings set through this interface). For example, * a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should * be compatible. Typically if a ResultProducer is an OptionHandler, * this string will represent the command line arguments required * to set the ResultProducer to that state. * * @return the description of the ResultProducer state, or null * if no state is defined */ public String getCompatibilityState() { String result = "-P " + m_TrainPercent; if (!getRandomizeData()) { result += " -R"; } if (m_SplitEvaluator == null) { result += " "; } else { result += " -W " + m_SplitEvaluator.getClass().getName(); } return result + " --"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String outputFileTipText() { return "Set the destination for saving raw output. If the rawOutput " +"option is selected, then output from the splitEvaluator for " +"individual train-test splits is saved. If the destination is a " +"directory, " +"then each output is saved to an individual gzip file; if the " +"destination is a file, then each output is saved as an entry " +"in a zip file."; } /** * Get the value of OutputFile. * * @return Value of OutputFile. */ public File getOutputFile() { return m_OutputFile; } /** * Set the value of OutputFile. * * @param newOutputFile Value to assign to OutputFile. */ public void setOutputFile(File newOutputFile) { m_OutputFile = newOutputFile; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String randomizeDataTipText() { return "Do not randomize dataset and do not perform probabilistic rounding " + "if false"; } /** * Get if dataset is to be randomized * @return true if dataset is to be randomized */ public boolean getRandomizeData() { return m_randomize; } /** * Set to true if dataset is to be randomized * @param d true if dataset is to be randomized */ public void setRandomizeData(boolean d) { m_randomize = d; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String rawOutputTipText() { return "Save raw output (useful for debugging). If set, then output is " +"sent to the destination specified by outputFile"; } /** * Get if raw split evaluator output is to be saved * @return true if raw split evalutor output is to be saved */ public boolean getRawOutput() { return m_debugOutput; } /** * Set to true if raw split evaluator output is to be saved * @param d true if output is to be saved */ public void setRawOutput(boolean d) { m_debugOutput = d; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String trainPercentTipText() { return "Set the percentage of data to use for training."; } /** * Get the value of TrainPercent. * * @return Value of TrainPercent. */ public double getTrainPercent() { return m_TrainPercent; } /** * Set the value of TrainPercent. * * @param newTrainPercent Value to assign to TrainPercent. */ public void setTrainPercent(double newTrainPercent) { m_TrainPercent = newTrainPercent; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String splitEvaluatorTipText() { return "The evaluator to apply to the test data. " +"This may be a classifier, regression scheme etc."; } /** * Get the SplitEvaluator. * * @return the SplitEvaluator. */ public SplitEvaluator getSplitEvaluator() { return m_SplitEvaluator; } /** * Set the SplitEvaluator. * * @param newSplitEvaluator new SplitEvaluator to use. */ public void setSplitEvaluator(SplitEvaluator newSplitEvaluator) { m_SplitEvaluator = newSplitEvaluator; m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(5); newVector.addElement(new Option( "\tThe percentage of instances to use for training.\n" +"\t(default 66)", "P", 1, "-P ")); newVector.addElement(new Option( "Save raw split evaluator output.", "D",0,"-D")); newVector.addElement(new Option( "\tThe filename where raw output will be stored.\n" +"\tIf a directory name is specified then then individual\n" +"\toutputs will be gzipped, otherwise all output will be\n" +"\tzipped to the named file. Use in conjuction with -D." +"\t(default splitEvalutorOut.zip)", "O", 1, "-O ")); newVector.addElement(new Option( "\tThe full class name of a SplitEvaluator.\n" +"\teg: weka.experiment.ClassifierSplitEvaluator", "W", 1, "-W ")); newVector.addElement(new Option( "\tSet when data is not to be randomized and the data sets' size.\n" + "\tIs not to be determined via probabilistic rounding.", "R",0,"-R")); if ((m_SplitEvaluator != null) && (m_SplitEvaluator instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to split evaluator " + m_SplitEvaluator.getClass().getName() + ":")); Enumeration enu = ((OptionHandler)m_SplitEvaluator).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -P <percent>
   *  The percentage of instances to use for training.
   *  (default 66)
* *
 -D
   * Save raw split evaluator output.
* *
 -O <file/directory name/path>
   *  The filename where raw output will be stored.
   *  If a directory name is specified then then individual
   *  outputs will be gzipped, otherwise all output will be
   *  zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)
* *
 -W <class name>
   *  The full class name of a SplitEvaluator.
   *  eg: weka.experiment.ClassifierSplitEvaluator
* *
 -R
   *  Set when data is not to be randomized and the data sets' size.
   *  Is not to be determined via probabilistic rounding.
* *
 
   * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator:
   * 
* *
 -W <class name>
   *  The full class name of the classifier.
   *  eg: weka.classifiers.bayes.NaiveBayes
* *
 -C <index>
   *  The index of the class for which IR statistics
   *  are to be output. (default 1)
* *
 -I <index>
   *  The index of an attribute to output in the
   *  results. This attribute should identify an
   *  instance in order to know which instances are
   *  in the test set of a cross validation. if 0
   *  no output (default 0).
* *
 -P
   *  Add target and prediction columns to the result
   *  for each fold.
* *
 
   * Options specific to classifier weka.classifiers.rules.ZeroR:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * All options after -- will be passed to the split evaluator. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setRawOutput(Utils.getFlag('D', options)); setRandomizeData(!Utils.getFlag('R', options)); String fName = Utils.getOption('O', options); if (fName.length() != 0) { setOutputFile(new File(fName)); } String trainPct = Utils.getOption('P', options); if (trainPct.length() != 0) { setTrainPercent((new Double(trainPct)).doubleValue()); } else { setTrainPercent(66); } String seName = Utils.getOption('W', options); if (seName.length() == 0) { throw new Exception("A SplitEvaluator must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // SE. setSplitEvaluator((SplitEvaluator)Utils.forName( SplitEvaluator.class, seName, null)); if (getSplitEvaluator() instanceof OptionHandler) { ((OptionHandler) getSplitEvaluator()) .setOptions(Utils.partitionOptions(options)); } } /** * Gets the current settings of the result producer. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] seOptions = new String [0]; if ((m_SplitEvaluator != null) && (m_SplitEvaluator instanceof OptionHandler)) { seOptions = ((OptionHandler)m_SplitEvaluator).getOptions(); } String [] options = new String [seOptions.length + 9]; int current = 0; options[current++] = "-P"; options[current++] = "" + getTrainPercent(); if (getRawOutput()) { options[current++] = "-D"; } if (!getRandomizeData()) { options[current++] = "-R"; } options[current++] = "-O"; options[current++] = getOutputFile().getName(); if (getSplitEvaluator() != null) { options[current++] = "-W"; options[current++] = getSplitEvaluator().getClass().getName(); } options[current++] = "--"; System.arraycopy(seOptions, 0, options, current, seOptions.length); current += seOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ public String toString() { String result = "RandomSplitResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ": "; } else { result += ": " + Utils.backQuoteChars(m_Instances.relationName()); } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6255 $"); } } // RandomSplitResultProducer




© 2015 - 2025 Weber Informatics LLC | Privacy Policy