All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.RegressionSplitEvaluator Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    RegressionSplitEvaluator.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */


package weka.experiment;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.rules.ZeroR;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Summarizable;
import weka.core.Utils;

import java.io.ByteArrayOutputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamClass;
import java.io.Serializable;
import java.lang.management.ManagementFactory;
import java.lang.management.ThreadMXBean;
import java.util.Enumeration;
import java.util.Vector;

/**
 
 * A SplitEvaluator that produces results for a classification scheme on a numeric class attribute.
 * 

* * Valid options are:

* *

 -W <class name>
 *  The full class name of the classifier.
 *  eg: weka.classifiers.bayes.NaiveBayes
* *
 
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Len Trigg ([email protected]) * @version $Revision: 7510 $ */ public class RegressionSplitEvaluator implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -328181640503349202L; /** The template classifier */ protected Classifier m_Template = new ZeroR(); /** The classifier used for evaluation */ protected Classifier m_Classifier; /** The names of any additional measures to look for in SplitEvaluators */ protected String [] m_AdditionalMeasures = null; /** Array of booleans corresponding to the measures in m_AdditionalMeasures indicating which of the AdditionalMeasures the current classifier can produce */ protected boolean [] m_doesProduce = null; /** Holds the statistics for the most recent application of the classifier */ protected String m_result = null; /** The classifier options (if any) */ protected String m_ClassifierOptions = ""; /** The classifier version */ protected String m_ClassifierVersion = ""; /** The length of a key */ private static final int KEY_SIZE = 3; /** The length of a result */ private static final int RESULT_SIZE = 21; /** * No args constructor. */ public RegressionSplitEvaluator() { updateOptions(); } /** * Returns a string describing this split evaluator * @return a description of the split evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "A SplitEvaluator that produces results for a classification " +"scheme on a numeric class attribute."; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(1); newVector.addElement(new Option( "\tThe full class name of the classifier.\n" +"\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W ")); if ((m_Template != null) && (m_Template instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to classifier " + m_Template.getClass().getName() + ":")); Enumeration enu = ((OptionHandler)m_Template).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -W <class name>
   *  The full class name of the classifier.
   *  eg: weka.classifiers.bayes.NaiveBayes
* *
 
   * Options specific to classifier weka.classifiers.rules.ZeroR:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * All option after -- will be passed to the classifier. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String cName = Utils.getOption('W', options); if (cName.length() == 0) { throw new Exception("A classifier must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // Classifier. setClassifier(Classifier.forName(cName, null)); if (getClassifier() instanceof OptionHandler) { ((OptionHandler) getClassifier()) .setOptions(Utils.partitionOptions(options)); updateOptions(); } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] classifierOptions = new String [0]; if ((m_Template != null) && (m_Template instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Template).getOptions(); } String [] options = new String [classifierOptions.length + 3]; int current = 0; if (getClassifier() != null) { options[current++] = "-W"; options[current++] = getClassifier().getClass().getName(); } options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set a list of method names for additional measures to look for * in Classifiers. This could contain many measures (of which only a * subset may be produceable by the current Classifier) if an experiment * is the type that iterates over a set of properties. * @param additionalMeasures an array of method names. */ public void setAdditionalMeasures(String [] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; // determine which (if any) of the additional measures this classifier // can produce if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) { m_doesProduce = new boolean [m_AdditionalMeasures.length]; if (m_Template instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_Template). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); for (int j=0;j classifier"; } result.append(toString()); result.append("Classifier model: \n"+m_Classifier.toString()+'\n'); // append the performance statistics if (m_result != null) { result.append(m_result); if (m_doesProduce != null) { for (int i=0;i classifier"; } return result + m_Template.getClass().getName() + " " + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 7510 $"); } } // RegressionSplitEvaluator




© 2015 - 2025 Weber Informatics LLC | Privacy Policy