weka.experiment.ResultMatrixCSV Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* ResultMatrixCSV.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/
package weka.experiment;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* This matrix is a container for the datasets and classifier setups and
* their statistics. It outputs the data in CSV format.
*
*
* @author FracPete (fracpete at waikato dot ac dot nz)
* @version $Revision: 1.4 $
*/
public class ResultMatrixCSV
extends ResultMatrix {
/** for serialization */
private static final long serialVersionUID = -171838863135042743L;
/**
* initializes the matrix as 1x1 matrix
*/
public ResultMatrixCSV() {
this(1, 1);
}
/**
* initializes the matrix with the given dimensions
*/
public ResultMatrixCSV(int cols, int rows) {
super(cols, rows);
}
/**
* initializes the matrix with the values from the given matrix
* @param matrix the matrix to get the values from
*/
public ResultMatrixCSV(ResultMatrix matrix) {
super(matrix);
}
/**
* returns the name of the output format
*/
public String getDisplayName() {
return "CSV";
}
/**
* removes the stored data but retains the dimensions of the matrix
*/
public void clear() {
super.clear();
setRowNameWidth(25);
setPrintColNames(false);
setEnumerateColNames(true);
LEFT_PARENTHESES = "[";
RIGHT_PARENTHESES = "]";
}
/**
* returns the header of the matrix as a string
* @see #m_HeaderKeys
* @see #m_HeaderValues
*/
public String toStringHeader() {
return new ResultMatrixPlainText(this).toStringHeader();
}
/**
* returns the matrix in CSV format
*/
public String toStringMatrix() {
StringBuffer result;
String[][] cells;
int i;
int n;
result = new StringBuffer();
cells = toArray();
for (i = 0; i < cells.length; i++) {
for (n = 0; n < cells[i].length; n++) {
if (n > 0)
result.append(",");
result.append(Utils.quote(cells[i][n]));
}
result.append("\n");
}
return result.toString();
}
/**
* returns returns a key for all the col names, for better readability if
* the names got cut off
*/
public String toStringKey() {
String result;
int i;
result = "Key,\n";
for (i = 0; i < getColCount(); i++) {
if (getColHidden(i))
continue;
result += LEFT_PARENTHESES + (i+1) + RIGHT_PARENTHESES
+ "," + Utils.quote(removeFilterName(m_ColNames[i])) + "\n";
}
return result;
}
/**
* returns the summary as string
*/
public String toStringSummary() {
String result;
String titles;
int resultsetLength;
int i;
int j;
String line;
if (m_NonSigWins == null)
return "-summary data not set-";
result = "";
titles = "";
resultsetLength = 1 + Math.max((int)(Math.log(getColCount())/Math.log(10)),
(int)(Math.log(getRowCount())/Math.log(10)));
for (i = 0; i < getColCount(); i++) {
if (getColHidden(i))
continue;
if (!titles.equals(""))
titles += ",";
titles += getSummaryTitle(i);
}
result += titles + ",'(No. of datasets where [col] >> [row])'\n";
for (i = 0; i < getColCount(); i++) {
if (getColHidden(i))
continue;
line = "";
for (j = 0; j < getColCount(); j++) {
if (getColHidden(j))
continue;
if (!line.equals(""))
line += ",";
if (j == i)
line += "-";
else
line += m_NonSigWins[i][j]
+ " (" + m_Wins[i][j] + ")";
}
result += line + "," + getSummaryTitle(i) + " = " + removeFilterName(m_ColNames[i]) + '\n';
}
return result;
}
/**
* returns the ranking in a string representation
*/
public String toStringRanking() {
int biggest;
int width;
String result;
int[] ranking;
int i;
int curr;
if (m_RankingWins == null)
return "-ranking data not set-";
biggest = Math.max(m_RankingWins[Utils.maxIndex(m_RankingWins)],
m_RankingLosses[Utils.maxIndex(m_RankingLosses)]);
width = Math.max(2 + (int)(Math.log(biggest) / Math.log(10)),
">-<".length());
result = ">-<,>,<,Resultset\n";
ranking = Utils.sort(m_RankingDiff);
for (i = getColCount() - 1; i >= 0; i--) {
curr = ranking[i];
if (getColHidden(curr))
continue;
result += m_RankingDiff[curr] + ","
+ m_RankingWins[curr] + ","
+ m_RankingLosses[curr] + ","
+ removeFilterName(m_ColNames[curr]) + "\n";
}
return result;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.4 $");
}
/**
* for testing only
*/
public static void main(String[] args) {
ResultMatrix matrix;
int i;
int n;
matrix = new ResultMatrixCSV(3, 3);
// set header
matrix.addHeader("header1", "value1");
matrix.addHeader("header2", "value2");
matrix.addHeader("header2", "value3");
// set values
for (i = 0; i < matrix.getRowCount(); i++) {
for (n = 0; n < matrix.getColCount(); n++) {
matrix.setMean(n, i, (i+1)*n);
matrix.setStdDev(n, i, ((double) (i+1)*n) / 100);
if (i == n) {
if (i % 2 == 1)
matrix.setSignificance(n, i, SIGNIFICANCE_WIN);
else
matrix.setSignificance(n, i, SIGNIFICANCE_LOSS);
}
}
}
System.out.println("\n\n--> " + matrix.getDisplayName());
System.out.println("\n1. complete\n");
System.out.println(matrix.toStringHeader() + "\n");
System.out.println(matrix.toStringMatrix() + "\n");
System.out.println(matrix.toStringKey());
System.out.println("\n2. complete with std deviations\n");
matrix.setShowStdDev(true);
System.out.println(matrix.toStringMatrix());
System.out.println("\n3. cols numbered\n");
matrix.setPrintColNames(false);
System.out.println(matrix.toStringMatrix());
System.out.println("\n4. second col missing\n");
matrix.setColHidden(1, true);
System.out.println(matrix.toStringMatrix());
System.out.println("\n5. last row missing, rows numbered too\n");
matrix.setRowHidden(2, true);
matrix.setPrintRowNames(false);
System.out.println(matrix.toStringMatrix());
System.out.println("\n6. mean prec to 3\n");
matrix.setMeanPrec(3);
matrix.setPrintRowNames(false);
System.out.println(matrix.toStringMatrix());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy