weka.gui.beans.Classifier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Classifier.java
* Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
*
*/
package weka.gui.beans;
import java.awt.BorderLayout;
import java.beans.EventSetDescriptor;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Date;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.filechooser.FileFilter;
import weka.classifiers.rules.ZeroR;
import weka.core.Instances;
import weka.core.OptionHandler;
import weka.core.Utils;
import weka.core.xml.KOML;
import weka.core.xml.XStream;
import weka.experiment.Task;
import weka.experiment.TaskStatusInfo;
import weka.gui.ExtensionFileFilter;
import weka.gui.Logger;
/**
* Bean that wraps around weka.classifiers
*
* @author Mark Hall
* @version $Revision: 9294 $
* @since 1.0
* @see JPanel
* @see BeanCommon
* @see Visible
* @see WekaWrapper
* @see Serializable
* @see UserRequestAcceptor
* @see TrainingSetListener
* @see TestSetListener
*/
public class Classifier extends JPanel implements BeanCommon, Visible,
WekaWrapper, EventConstraints, Serializable, UserRequestAcceptor,
TrainingSetListener, TestSetListener, InstanceListener {
/** for serialization */
private static final long serialVersionUID = 659603893917736008L;
protected BeanVisual m_visual = new BeanVisual("Classifier",
BeanVisual.ICON_PATH + "DefaultClassifier.gif", BeanVisual.ICON_PATH
+ "DefaultClassifier_animated.gif");
private static int IDLE = 0;
private static int BUILDING_MODEL = 1;
private static int CLASSIFYING = 2;
private int m_state = IDLE;
// private Thread m_buildThread = null;
/**
* Global info for the wrapped classifier (if it exists).
*/
protected String m_globalInfo;
/**
* Objects talking to us
*/
private final Hashtable m_listenees = new Hashtable();
/**
* Objects listening for batch classifier events
*/
private final Vector m_batchClassifierListeners = new Vector();
/**
* Objects listening for incremental classifier events
*/
private final Vector m_incrementalClassifierListeners = new Vector();
/**
* Objects listening for graph events
*/
private final Vector m_graphListeners = new Vector();
/**
* Objects listening for text events
*/
private final Vector m_textListeners = new Vector();
/**
* Holds training instances for batch training. Not transient because header
* is retained for validating any instance events that this classifier might
* be asked to predict in the future.
*/
private Instances m_trainingSet;
private transient Instances m_testingSet;
private weka.classifiers.Classifier m_Classifier = new ZeroR();
/** Template used for creating copies when building in parallel */
private weka.classifiers.Classifier m_ClassifierTemplate = m_Classifier;
private final IncrementalClassifierEvent m_ie = new IncrementalClassifierEvent(
this);
/** the extension for serialized models (binary Java serialization) */
public final static String FILE_EXTENSION = "model";
private transient JFileChooser m_fileChooser = null;
protected FileFilter m_binaryFilter = new ExtensionFileFilter("."
+ FILE_EXTENSION, Messages.getInstance().getString(
"Classifier_BinaryFilter_ExtensionFileFilter_Text_First")
+ FILE_EXTENSION
+ Messages.getInstance().getString(
"Classifier_BinaryFilter_ExtensionFileFilter_Text_Second"));
protected FileFilter m_KOMLFilter = new ExtensionFileFilter(
KOML.FILE_EXTENSION + FILE_EXTENSION, Messages.getInstance().getString(
"Classifier_KOMLFilter_ExtensionFileFilter_Text_First")
+ KOML.FILE_EXTENSION
+ FILE_EXTENSION
+ Messages.getInstance().getString(
"Classifier_KOMLFilter_ExtensionFileFilter_Text_Second"));
protected FileFilter m_XStreamFilter = new ExtensionFileFilter(
XStream.FILE_EXTENSION + FILE_EXTENSION, Messages.getInstance()
.getString("Classifier_XStreamFilter_ExtensionFileFilter_Text_First")
+ XStream.FILE_EXTENSION
+ FILE_EXTENSION
+ Messages.getInstance().getString(
"Classifier_XStreamFilter_ExtensionFileFilter_Text_Second"));
/**
* If the classifier is an incremental classifier, should we update it (ie
* train it on incoming instances). This makes it possible incrementally test
* on a separate stream of instances without updating the classifier, or mix
* batch training/testing with incremental training/testing
*/
private boolean m_updateIncrementalClassifier = true;
private transient Logger m_log = null;
/**
* Event to handle when processing incremental updates
*/
private InstanceEvent m_incrementalEvent;
/**
* Number of threads to use to train models with
*/
protected int m_executionSlots = 2;
// protected int m_queueSize = 5;
/**
* Pool of threads to train models on incoming data
*/
protected transient ThreadPoolExecutor m_executorPool;
/**
* Stores completed models and associated data sets.
*/
protected transient BatchClassifierEvent[][] m_outputQueues;
/**
* Stores which sets from which runs have been completed.
*/
protected transient boolean[][] m_completedSets;
/**
* Identifier for the current batch. A batch is a group of related runs/sets.
*/
protected transient Date m_currentBatchIdentifier;
protected transient boolean m_batchStarted = false;
/**
* Holds original icon label text
*/
protected String m_oldText = "";
/**
* true if we should block any further training data sets.
*/
protected boolean m_block = false;
/**
* Global info (if it exists) for the wrapped classifier
*
* @return the global info
*/
public String globalInfo() {
return m_globalInfo;
}
/**
* Creates a new Classifier
instance.
*/
public Classifier() {
setLayout(new BorderLayout());
add(m_visual, BorderLayout.CENTER);
setClassifierTemplate(m_ClassifierTemplate);
// setupFileChooser();
}
private void startExecutorPool() {
if (m_executorPool != null) {
m_executorPool.shutdownNow();
}
m_executorPool = new ThreadPoolExecutor(m_executionSlots, m_executionSlots,
120, TimeUnit.SECONDS, new LinkedBlockingQueue());
}
/**
* Set a custom (descriptive) name for this bean
*
* @param name the name to use
*/
public void setCustomName(String name) {
m_visual.setText(name);
}
/**
* Get the custom (descriptive) name for this bean (if one has been set)
*
* @return the custom name (or the default name)
*/
public String getCustomName() {
return m_visual.getText();
}
protected void setupFileChooser() {
if (m_fileChooser == null) {
m_fileChooser = new JFileChooser(new File(System.getProperty("user.dir")));
}
m_fileChooser.addChoosableFileFilter(m_binaryFilter);
if (KOML.isPresent()) {
m_fileChooser.addChoosableFileFilter(m_KOMLFilter);
}
if (XStream.isPresent()) {
m_fileChooser.addChoosableFileFilter(m_XStreamFilter);
}
m_fileChooser.setFileFilter(m_binaryFilter);
}
/**
* Get the number of execution slots (threads) used to train models.
*
* @return the number of execution slots.
*/
public int getExecutionSlots() {
return m_executionSlots;
}
/**
* Set the number of execution slots (threads) to use to train models with.
*
* @param slots the number of execution slots to use.
*/
public void setExecutionSlots(int slots) {
m_executionSlots = slots;
}
/**
* Set the classifier for this wrapper
*
* @param c a weka.classifiers.Classifier
value
*/
public void setClassifierTemplate(weka.classifiers.Classifier c) {
boolean loadImages = true;
if (c.getClass().getName()
.compareTo(m_ClassifierTemplate.getClass().getName()) == 0) {
loadImages = false;
} else {
// classifier has changed so any batch training status is now
// invalid
m_trainingSet = null;
}
m_ClassifierTemplate = c;
String classifierName = c.getClass().toString();
classifierName = classifierName.substring(
classifierName.lastIndexOf('.') + 1, classifierName.length());
if (loadImages) {
if (!m_visual.loadIcons(BeanVisual.ICON_PATH + classifierName + ".gif",
BeanVisual.ICON_PATH + classifierName + "_animated.gif")) {
useDefaultVisual();
}
m_visual.setText(classifierName);
}
if (!(m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier)
&& (m_listenees.containsKey("instance"))) {
if (m_log != null) {
m_log.logMessage(Messages.getInstance().getString(
"Classifier_SetClassifierTemplate_LogMessage_Text_First")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_SetClassifierTemplate_LogMessage_Text_Second")
+ getCustomName()
+ Messages.getInstance().getString(
"Classifier_SetClassifierTemplate_LogMessage_Text_Third"));
}
}
// get global info
m_globalInfo = KnowledgeFlowApp.getGlobalInfo(m_ClassifierTemplate);
}
/**
* Return the classifier template currently in use.
*
* @return the classifier template currently in use.
*/
public weka.classifiers.Classifier getClassifierTemplate() {
return m_ClassifierTemplate;
}
private void setTrainedClassifier(weka.classifiers.Classifier tc)
throws Exception {
// set the template
weka.classifiers.Classifier newTemplate = null;
String[] options = tc.getOptions();
newTemplate = weka.classifiers.Classifier.forName(tc.getClass().getName(),
options);
if (!newTemplate.getClass().equals(m_ClassifierTemplate.getClass())) {
throw new Exception("Classifier model " + tc.getClass().getName()
+ " is not the same type " + "of classifier as this one ("
+ m_ClassifierTemplate.getClass().getName() + ")");
}
setClassifierTemplate(newTemplate);
m_Classifier = tc;
}
/**
* Returns true if this classifier has an incoming connection that is an
* instance stream
*
* @return true if has an incoming connection that is an instance stream
*/
public boolean hasIncomingStreamInstances() {
if (m_listenees.size() == 0) {
return false;
}
if (m_listenees.containsKey("instance")) {
return true;
}
return false;
}
/**
* Returns true if this classifier has an incoming connection that is a batch
* set of instances
*
* @return a boolean
value
*/
public boolean hasIncomingBatchInstances() {
if (m_listenees.size() == 0) {
return false;
}
if (m_listenees.containsKey("trainingSet")
|| m_listenees.containsKey("testSet")) {
return true;
}
return false;
}
/**
* Get the classifier currently set for this wrapper
*
* @return a weka.classifiers.Classifier
value
*/
public weka.classifiers.Classifier getClassifier() {
return m_Classifier;
}
/**
* Sets the algorithm (classifier) for this bean
*
* @param algorithm an Object
value
* @exception IllegalArgumentException if an error occurs
*/
public void setWrappedAlgorithm(Object algorithm) {
if (!(algorithm instanceof weka.classifiers.Classifier)) {
throw new IllegalArgumentException(
algorithm.getClass()
+ Messages
.getInstance()
.getString(
"Classifier_SetWrappedAlgorithm_IllegalArgumentException_Text_First"));
}
setClassifierTemplate((weka.classifiers.Classifier) algorithm);
}
/**
* Returns the wrapped classifier
*
* @return an Object
value
*/
public Object getWrappedAlgorithm() {
return getClassifierTemplate();
}
/**
* Get whether an incremental classifier will be updated on the incoming
* instance stream.
*
* @return true if an incremental classifier is to be updated.
*/
public boolean getUpdateIncrementalClassifier() {
return m_updateIncrementalClassifier;
}
/**
* Set whether an incremental classifier will be updated on the incoming
* instance stream.
*
* @param update true if an incremental classifier is to be updated.
*/
public void setUpdateIncrementalClassifier(boolean update) {
m_updateIncrementalClassifier = update;
}
/**
* Accepts an instance for incremental processing.
*
* @param e an InstanceEvent
value
*/
public void acceptInstance(InstanceEvent e) {
m_incrementalEvent = e;
handleIncrementalEvent();
}
/**
* Handles initializing and updating an incremental classifier
*/
private void handleIncrementalEvent() {
if (m_executorPool != null
&& (m_executorPool.getQueue().size() > 0 || m_executorPool
.getActiveCount() > 0)) {
String messg = Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_Messg_Text_First")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_Messg_Text_Second");
if (m_log != null) {
m_log.logMessage(messg);
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_StatusMessage_Text_First"));
} else {
System.err.println(messg);
}
return;
}
if (m_incrementalEvent.getStatus() == InstanceEvent.FORMAT_AVAILABLE) {
// clear any warnings/errors from the log
if (m_log != null) {
m_log.statusMessage(statusMessagePrefix() + "remove");
}
// Instances dataset = m_incrementalEvent.getInstance().dataset();
Instances dataset = m_incrementalEvent.getStructure();
// default to the last column if no class is set
if (dataset.classIndex() < 0) {
stop();
String errorMessage = statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_ErrorMessage_Text_First");
if (m_log != null) {
m_log.statusMessage(errorMessage);
m_log.logMessage(Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_LogMessage_Text_First")
+ getCustomName()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_LogMessage_Text_Second")
+ errorMessage);
} else {
System.err.println(Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_Error_Text_First")
+ getCustomName()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_Error_Text_Second")
+ errorMessage);
}
return;
// System.err.println("Classifier : setting class index...");
// dataset.setClassIndex(dataset.numAttributes()-1);
}
try {
// initialize classifier if m_trainingSet is null
// otherwise assume that classifier has been pre-trained in batch
// mode, *if* headers match
if (m_trainingSet == null || (!dataset.equalHeaders(m_trainingSet))) {
if (!(m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier)) {
stop(); // stop all processing
if (m_log != null) {
String msg = (m_trainingSet == null) ? statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_Msg_Text_First")
: statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_Msg_Text_Second");
m_log.logMessage(Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_LogMessage_Text_Third")
+ msg);
m_log.statusMessage(msg);
}
return;
}
if (m_trainingSet != null && (!dataset.equalHeaders(m_trainingSet))) {
if (m_log != null) {
String msg = statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_Msg_Text_Third");
m_log.logMessage(Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_LogMessage_Text_Fourth")
+ msg);
m_log.statusMessage(msg);
}
m_trainingSet = null;
}
if (m_trainingSet == null) {
// initialize the classifier if it hasn't been trained yet
m_trainingSet = new Instances(dataset, 0);
m_Classifier = weka.classifiers.Classifier
.makeCopy(m_ClassifierTemplate);
m_Classifier.buildClassifier(m_trainingSet);
}
}
} catch (Exception ex) {
stop();
if (m_log != null) {
m_log
.statusMessage(statusMessagePrefix()
+ Messages
.getInstance()
.getString(
"Classifier_HandleIncrementalEvent_StatusMessage_Text_Second"));
m_log.logMessage(Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_LogMessage_Text_Fifth")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_LogMessage_Text_Sixth")
+ ex.getMessage());
}
ex.printStackTrace();
return;
}
// Notify incremental classifier listeners of new batch
System.err.println("NOTIFYING NEW BATCH");
m_ie.setStructure(dataset);
m_ie.setClassifier(m_Classifier);
notifyIncrementalClassifierListeners(m_ie);
return;
} else {
if (m_trainingSet == null) {
// simply return. If the training set is still null after
// the first instance then the classifier must not be updateable
// and hasn't been previously batch trained - therefore we can't
// do anything meaningful
return;
}
}
try {
// test on this instance
if (m_incrementalEvent.getInstance().dataset().classIndex() < 0) {
// System.err.println("Classifier : setting class index...");
m_incrementalEvent
.getInstance()
.dataset()
.setClassIndex(
m_incrementalEvent.getInstance().dataset().numAttributes() - 1);
}
int status = IncrementalClassifierEvent.WITHIN_BATCH;
/*
* if (m_incrementalEvent.getStatus() == InstanceEvent.FORMAT_AVAILABLE) {
* status = IncrementalClassifierEvent.NEW_BATCH;
*/
/* } else */if (m_incrementalEvent.getStatus() == InstanceEvent.BATCH_FINISHED) {
status = IncrementalClassifierEvent.BATCH_FINISHED;
}
m_ie.setStatus(status);
m_ie.setClassifier(m_Classifier);
m_ie.setCurrentInstance(m_incrementalEvent.getInstance());
notifyIncrementalClassifierListeners(m_ie);
// now update on this instance (if class is not missing and classifier
// is updateable and user has specified that classifier is to be
// updated)
if (m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier
&& m_updateIncrementalClassifier == true
&& !(m_incrementalEvent.getInstance().isMissing(m_incrementalEvent
.getInstance().dataset().classIndex()))) {
((weka.classifiers.UpdateableClassifier) m_Classifier)
.updateClassifier(m_incrementalEvent.getInstance());
}
if (m_incrementalEvent.getStatus() == InstanceEvent.BATCH_FINISHED) {
if (m_textListeners.size() > 0) {
String modelString = m_Classifier.toString();
String titleString = m_Classifier.getClass().getName();
titleString = titleString.substring(titleString.lastIndexOf('.') + 1,
titleString.length());
modelString = Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_ModelString_Text_First")
+ titleString
+ "\n"
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_ModelString_Text_Second")
+ m_trainingSet.relationName() + "\n\n" + modelString;
titleString = Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_TitleString_Text_First")
+ titleString;
TextEvent nt = new TextEvent(this, modelString, titleString);
notifyTextListeners(nt);
}
}
} catch (Exception ex) {
stop();
if (m_log != null) {
m_log.logMessage(Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_LogMessage_Text_Seventh")
+ statusMessagePrefix() + ex.getMessage());
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_HandleIncrementalEvent_StatusMessage_Text_Third"));
ex.printStackTrace();
} else {
ex.printStackTrace();
}
}
}
protected class TrainingTask implements Runnable, Task {
private final int m_runNum;
private final int m_maxRunNum;
private final int m_setNum;
private final int m_maxSetNum;
private Instances m_train = null;
private final TaskStatusInfo m_taskInfo = new TaskStatusInfo();
public TrainingTask(int runNum, int maxRunNum, int setNum, int maxSetNum,
Instances train) {
m_runNum = runNum;
m_maxRunNum = maxRunNum;
m_setNum = setNum;
m_maxSetNum = maxSetNum;
m_train = train;
m_taskInfo.setExecutionStatus(TaskStatusInfo.TO_BE_RUN);
}
public void run() {
execute();
}
public void execute() {
try {
if (m_train != null) {
if (m_train.classIndex() < 0) {
// stop all processing
stop();
String errorMessage = statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_ErrorMessage_Text_First");
if (m_log != null) {
m_log.statusMessage(errorMessage);
m_log.logMessage(Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_LogMessage_Text_First")
+ errorMessage);
} else {
System.err.println(Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_Error_Text_First")
+ errorMessage);
}
return;
/*
* // assume last column is the class
* m_train.setClassIndex(m_train.numAttributes()-1); if (m_log !=
* null) { m_log.logMessage("[Classifier] " + statusMessagePrefix()
* + " : assuming last " +"column is the class"); }
*/
}
if (m_runNum == 1 && m_setNum == 1) {
// set this back to idle once the last fold
// of the last run has completed
m_state = BUILDING_MODEL; // global state
// local status of this runnable
m_taskInfo.setExecutionStatus(TaskStatusInfo.PROCESSING);
}
// m_visual.setAnimated();
// m_visual.setText("Building model...");
String msg = statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_Msg_Text_First")
+ m_runNum
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_Msg_Text_Second") + m_setNum;
if (m_log != null) {
m_log.statusMessage(msg);
} else {
System.err.println(msg);
}
// buildClassifier();
// copy the classifier configuration
weka.classifiers.Classifier classifierCopy = weka.classifiers.Classifier
.makeCopy(m_ClassifierTemplate);
// build this model
classifierCopy.buildClassifier(m_train);
if (m_runNum == m_maxRunNum && m_setNum == m_maxSetNum) {
// Save the last classifier (might be used later on for
// classifying further test sets.
m_Classifier = classifierCopy;
m_trainingSet = new Instances(m_train, 0);
}
// if (m_batchClassifierListeners.size() > 0) {
// notify anyone who might be interested in just the model
// and training set.
BatchClassifierEvent ce = new BatchClassifierEvent(Classifier.this,
classifierCopy, new DataSetEvent(this, m_train), null, // no test
// set
// (yet)
m_setNum, m_maxSetNum);
ce.setGroupIdentifier(m_currentBatchIdentifier.getTime());
notifyBatchClassifierListeners(ce);
// store in the output queue (if we have incoming test set events)
classifierTrainingComplete(ce);
// }
if (classifierCopy instanceof weka.core.Drawable
&& m_graphListeners.size() > 0) {
String grphString = ((weka.core.Drawable) classifierCopy).graph();
int grphType = ((weka.core.Drawable) classifierCopy).graphType();
String grphTitle = classifierCopy.getClass().getName();
grphTitle = grphTitle.substring(grphTitle.lastIndexOf('.') + 1,
grphTitle.length());
grphTitle = Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_GrphTitle_Text_First")
+ m_setNum + " (" + m_train.relationName() + ") " + grphTitle;
GraphEvent ge = new GraphEvent(Classifier.this, grphString,
grphTitle, grphType);
notifyGraphListeners(ge);
}
if (m_textListeners.size() > 0) {
String modelString = classifierCopy.toString();
String titleString = classifierCopy.getClass().getName();
titleString = titleString.substring(
titleString.lastIndexOf('.') + 1, titleString.length());
modelString = Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_ModelString_Text_First")
+ titleString
+ "\n"
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_ModelString_Text_Second")
+ m_train.relationName()
+ ((m_maxSetNum > 1) ? Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_ModelString_Text_Third")
+ m_setNum : "") + "\n\n" + modelString;
titleString = Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_TitleString_Text_First")
+ titleString;
TextEvent nt = new TextEvent(Classifier.this, modelString,
titleString);
notifyTextListeners(nt);
}
}
} catch (Exception ex) {
// Stop all processing
stop();
ex.printStackTrace();
if (m_log != null) {
String titleString = Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_TitleString_Text_Second")
+ statusMessagePrefix();
titleString += Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_TitleString_Text_Third")
+ m_runNum
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_TitleString_Text_Fourth")
+ m_setNum
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_TitleString_Text_Fifth");
m_log.logMessage(titleString
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_LogMessage_Text_Fourth")
+ ex.getMessage());
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_StatusMessage_Text_First"));
ex.printStackTrace();
}
m_taskInfo.setExecutionStatus(TaskStatusInfo.FAILED);
} finally {
m_visual.setStatic();
if (m_log != null) {
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_StatusMessage_Text_Second"));
}
m_state = IDLE;
if (Thread.currentThread().isInterrupted()) {
// prevent any classifier events from being fired
m_trainingSet = null;
if (m_log != null) {
String titleString = Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_TitleString_Text_Sixth")
+ statusMessagePrefix();
m_log.logMessage(titleString
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_LogMessage_Text_Fifth")
+ m_runNum
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_LogMessage_Text_Sixth")
+ m_setNum
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_LogMessage_Text_Seventh"));
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_TrainingTask_Execute_LogMessage_Text_Seventh"));
/*
* // are we the last active thread? if
* (m_executorPool.getActiveCount() == 1) { String msg =
* "[Classifier] " + statusMessagePrefix() +
* " last classifier unblocking..."; m_log.logMessage(msg); //
* m_log.statusMessage(statusMessagePrefix() + "finished."); m_block
* = false; // block(false); }
*/
}
/*
* System.err.println("Queue size: " +
* m_executorPool.getQueue().size() + " Active count: " +
* m_executorPool.getActiveCount());
*/
} /*
* else { // check to see if we are the last active thread if
* (m_executorPool == null || (m_executorPool.getQueue().size() == 0
* && m_executorPool.getActiveCount() == 1)) {
*
* String msg = "[Classifier] " + statusMessagePrefix() +
* " last classifier unblocking..."; if (m_log != null) {
* m_log.logMessage(msg); } else { System.err.println(msg); }
* //m_visual.setText(m_oldText);
*
* if (m_log != null) { m_log.statusMessage(statusMessagePrefix() +
* "Finished."); } // m_outputQueues = null; // free memory m_block =
* false; m_state = IDLE; // block(false); } }
*/
}
}
public TaskStatusInfo getTaskStatus() {
// TODO
return null;
}
}
/**
* Accepts a training set and builds batch classifier
*
* @param e a TrainingSetEvent
value
*/
public void acceptTrainingSet(final TrainingSetEvent e) {
if (e.isStructureOnly()) {
// no need to build a classifier, instead just generate a dummy
// BatchClassifierEvent in order to pass on instance structure to
// any listeners - eg. PredictionAppender can use it to determine
// the final structure of instances with predictions appended
BatchClassifierEvent ce = new BatchClassifierEvent(this, m_Classifier,
new DataSetEvent(this, e.getTrainingSet()), new DataSetEvent(this,
e.getTrainingSet()), e.getSetNumber(), e.getMaxSetNumber());
notifyBatchClassifierListeners(ce);
return;
}
if (m_block) {
// block(true);
if (m_log != null) {
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_StatusMessage_Text_First"));
m_log.logMessage(Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_LogMessage_Text_First")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_LogMessage_Text_Second"));
}
return;
}
// Do some initialization if this is the first set of the first run
if (e.getRunNumber() == 1 && e.getSetNumber() == 1) {
// m_oldText = m_visual.getText();
// store the training header
m_trainingSet = new Instances(e.getTrainingSet(), 0);
m_state = BUILDING_MODEL;
String msg = Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_First")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Second")
+ getExecutionSlots()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Third");
if (m_log != null) {
m_log.logMessage(msg);
} else {
System.err.println(msg);
}
// start the execution pool (always re-create the executor because the
// user
// might have changed the number of execution slots since the last time)
// if (m_executorPool == null) {
startExecutorPool();
// }
// setup output queues
msg = Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Fourth")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Fifth");
if (m_log != null) {
m_log.logMessage(msg);
} else {
System.err.println(msg);
}
if (!m_batchStarted) {
m_outputQueues = new BatchClassifierEvent[e.getMaxRunNumber()][e
.getMaxSetNumber()];
m_completedSets = new boolean[e.getMaxRunNumber()][e.getMaxSetNumber()];
m_currentBatchIdentifier = new Date();
m_batchStarted = true;
}
}
// create a new task and schedule for execution
TrainingTask newTask = new TrainingTask(e.getRunNumber(),
e.getMaxRunNumber(), e.getSetNumber(), e.getMaxSetNumber(),
e.getTrainingSet());
String msg = Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Sixth")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Seventh")
+ e.getRunNumber()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Eighth")
+ e.getSetNumber()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Nineth");
if (m_log != null) {
m_log.logMessage(msg);
} else {
System.err.println(msg);
}
// delay just a little bit
/*
* try { Thread.sleep(10); } catch (Exception ex){}
*/
m_executorPool.execute(newTask);
}
/**
* Accepts a test set for a batch trained classifier
*
* @param e a TestSetEvent
value
*/
public synchronized void acceptTestSet(TestSetEvent e) {
if (m_block) {
// block(true);
if (m_log != null) {
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_StatusMessage_Text_Second"));
m_log.logMessage(Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_Msg_Text_Nineth")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTrainingSet_StatusMessage_Text_Second"));
}
return;
}
Instances testSet = e.getTestSet();
if (testSet != null) {
if (testSet.classIndex() < 0) {
// testSet.setClassIndex(testSet.numAttributes() - 1);
// stop all processing
stop();
String errorMessage = statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_ErrorMessage_Text_First");
if (m_log != null) {
m_log.statusMessage(errorMessage);
m_log.logMessage(Messages.getInstance().getString(
"Classifier_AcceptTestSet_LogMessage_Text_First")
+ errorMessage);
} else {
System.err.println(Messages.getInstance().getString(
"Classifier_AcceptTestSet_Error_Text_First")
+ errorMessage);
}
return;
}
}
// If we just have a test set connection or
// there is just one run involving one set (and we are not
// currently building a model), then use the
// last saved model
if (m_Classifier != null && m_state == IDLE
&& (!m_listenees.containsKey("trainingSet"))) {
// if this is structure only then just return at this point
if (e.getTestSet() != null && e.isStructureOnly()) {
return;
}
// first check that we have a training set/header (if we don't,
// then it means that no model has been loaded
if (m_trainingSet == null) {
stop();
String errorMessage = statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_ErrorMessage_Text_First_Alpha");
if (m_log != null) {
m_log.statusMessage(errorMessage);
m_log.logMessage(Messages.getInstance().getString(
"Classifier_AcceptTestSet_LogMessage_Text_Second")
+ errorMessage);
} else {
System.err.println(Messages.getInstance().getString(
"Classifier_AcceptTestSet_Error_Text_Second")
+ errorMessage);
}
return;
}
testSet = e.getTestSet();
if (e.getRunNumber() == 1 && e.getSetNumber() == 1) {
m_currentBatchIdentifier = new Date();
}
if (testSet != null) {
/*
* if (testSet.classIndex() < 0) {
* testSet.setClassIndex(testSet.numAttributes() - 1); }
*/
if (m_trainingSet.equalHeaders(testSet)) {
BatchClassifierEvent ce = new BatchClassifierEvent(this,
m_Classifier, new DataSetEvent(this, m_trainingSet),
new DataSetEvent(this, e.getTestSet()), e.getRunNumber(),
e.getMaxRunNumber(), e.getSetNumber(), e.getMaxSetNumber());
ce.setGroupIdentifier(m_currentBatchIdentifier.getTime());
if (m_log != null && !e.isStructureOnly()) {
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_StatusMessage_Text_First"));
}
m_batchStarted = false;
notifyBatchClassifierListeners(ce);
}
}
} else {
/*
* System.err.println("[Classifier] accepting test set: run " +
* e.getRunNumber() + " fold " + e.getSetNumber());
*/
if (e.getRunNumber() == 1 && e.getSetNumber() == 1) {
if (!m_batchStarted) {
m_outputQueues = new BatchClassifierEvent[e.getMaxRunNumber()][e
.getMaxSetNumber()];
m_completedSets = new boolean[e.getMaxRunNumber()][e
.getMaxSetNumber()];
m_currentBatchIdentifier = new Date();
m_batchStarted = true;
}
}
if (m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1] == null) {
// store an event with a null model and training set (to be filled in
// later)
m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1] = new BatchClassifierEvent(
this, null, null, new DataSetEvent(this, e.getTestSet()),
e.getRunNumber(), e.getMaxRunNumber(), e.getSetNumber(),
e.getMaxSetNumber());
if (e.getRunNumber() == e.getMaxRunNumber()
&& e.getSetNumber() == e.getMaxSetNumber()) {
// block on the last fold of the last run
/*
* System.err.println("[Classifier] blocking on last fold of last run..."
* ); block(true);
*/
if (e.getMaxSetNumber() != 1) {
m_block = true;
}
}
} else {
// Otherwise, there is a model here waiting for a test set...
m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1]
.setTestSet(new DataSetEvent(this, e.getTestSet()));
checkCompletedRun(e.getRunNumber(), e.getMaxRunNumber(),
e.getMaxSetNumber());
}
}
}
private synchronized void classifierTrainingComplete(BatchClassifierEvent ce) {
// check the output queues if we have an incoming test set connection
if (m_listenees.containsKey("testSet")) {
String msg = Messages.getInstance().getString(
"Classifier_AcceptTestSet_Msg_Text_First")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_Msg_Text_Second")
+ ce.getRunNumber()
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_Msg_Text_Third") + ce.getSetNumber();
if (m_log != null) {
m_log.logMessage(msg);
} else {
System.err.println(msg);
}
if (m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1] == null) {
// store the event - test data filled in later
m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1] = ce;
} else {
// there is a test set here waiting for a model and training set
m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1]
.setClassifier(ce.getClassifier());
m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1]
.setTrainSet(ce.getTrainSet());
}
checkCompletedRun(ce.getRunNumber(), ce.getMaxRunNumber(),
ce.getMaxSetNumber());
}
}
private synchronized void checkCompletedRun(int runNum, int maxRunNum,
int maxSets) {
// look to see if there are any completed classifiers that we can pass
// on for evaluation
for (int i = 0; i < maxSets; i++) {
if (m_outputQueues[runNum - 1][i] != null) {
if (m_outputQueues[runNum - 1][i].getClassifier() != null
&& m_outputQueues[runNum - 1][i].getTestSet() != null) {
String msg = Messages.getInstance().getString(
"Classifier_AcceptTestSet_Msg_Text_Fourth")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_Msg_Text_Fifth")
+ runNum
+ "/"
+ (i + 1)
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_Msg_Text_Sixth");
if (m_log != null) {
m_log.logMessage(msg);
} else {
System.err.println(msg);
}
// dispatch this one
m_outputQueues[runNum - 1][i]
.setGroupIdentifier(m_currentBatchIdentifier.getTime());
notifyBatchClassifierListeners(m_outputQueues[runNum - 1][i]);
// save memory
m_outputQueues[runNum - 1][i] = null;
// mark as done
m_completedSets[runNum - 1][i] = true;
}
}
}
// scan for completion
boolean done = true;
for (int i = 0; i < maxRunNum; i++) {
for (int j = 0; j < maxSets; j++) {
if (!m_completedSets[i][j]) {
done = false;
break;
}
}
if (!done) {
break;
}
}
if (done) {
String msg = Messages.getInstance().getString(
"Classifier_AcceptTestSet_Msg_Text_Seventh")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_Msg_Text_Eighth");
if (m_log != null) {
m_log.logMessage(msg);
} else {
System.err.println(msg);
}
// m_visual.setText(m_oldText);
if (m_log != null) {
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_AcceptTestSet_StatusMessage_Text_Second"));
}
// m_outputQueues = null; // free memory
m_batchStarted = false;
block(false);
m_block = false;
m_state = IDLE;
}
}
/*
* private synchronized void checkCompletedRun(int runNum, int maxRunNum, int
* maxSets) { boolean runOK = true; for (int i = 0; i < maxSets; i++) { if
* (m_outputQueues[runNum - 1][i] == null) { runOK = false; break; } else if
* (m_outputQueues[runNum - 1][i].getClassifier() == null ||
* m_outputQueues[runNum - 1][i].getTestSet() == null) { runOK = false; break;
* } }
*
* if (runOK) { String msg = "[Classifier] " + statusMessagePrefix() +
* " dispatching run " + runNum + " to listeners."; if (m_log != null) {
* m_log.logMessage(msg); } else { System.err.println(msg); } // dispatch this
* run to listeners for (int i = 0; i < maxSets; i++) {
* notifyBatchClassifierListeners(m_outputQueues[runNum - 1][i]); // save
* memory m_outputQueues[runNum - 1][i] = null; }
*
* if (runNum == maxRunNum) { // unblock msg = "[Classifier] " +
* statusMessagePrefix() + " last classifier unblocking...";
* System.err.println(msg); if (m_log != null) { m_log.logMessage(msg); } else
* { System.err.println(msg); } //m_visual.setText(m_oldText);
*
* if (m_log != null) { m_log.statusMessage(statusMessagePrefix() +
* "Finished."); } // m_outputQueues = null; // free memory m_block = false;
* // block(false); m_state = IDLE; } } }
*/
/**
* Sets the visual appearance of this wrapper bean
*
* @param newVisual a BeanVisual
value
*/
public void setVisual(BeanVisual newVisual) {
m_visual = newVisual;
}
/**
* Gets the visual appearance of this wrapper bean
*/
public BeanVisual getVisual() {
return m_visual;
}
/**
* Use the default visual appearance for this bean
*/
public void useDefaultVisual() {
// try to get a default for this package of classifiers
String name = m_ClassifierTemplate.getClass().toString();
String packageName = name.substring(0, name.lastIndexOf('.'));
packageName = packageName.substring(packageName.lastIndexOf('.') + 1,
packageName.length());
if (!m_visual.loadIcons(BeanVisual.ICON_PATH + "Default_" + packageName
+ "Classifier.gif", BeanVisual.ICON_PATH + "Default_" + packageName
+ "Classifier_animated.gif")) {
m_visual.loadIcons(BeanVisual.ICON_PATH + "DefaultClassifier.gif",
BeanVisual.ICON_PATH + "DefaultClassifier_animated.gif");
}
}
/**
* Add a batch classifier listener
*
* @param cl a BatchClassifierListener
value
*/
public synchronized void addBatchClassifierListener(BatchClassifierListener cl) {
m_batchClassifierListeners.addElement(cl);
}
/**
* Remove a batch classifier listener
*
* @param cl a BatchClassifierListener
value
*/
public synchronized void removeBatchClassifierListener(
BatchClassifierListener cl) {
m_batchClassifierListeners.remove(cl);
}
/**
* Notify all batch classifier listeners of a batch classifier event
*
* @param ce a BatchClassifierEvent
value
*/
private void notifyBatchClassifierListeners(BatchClassifierEvent ce) {
// don't do anything if the thread that we've been running in has been
// interrupted
if (Thread.currentThread().isInterrupted()) {
return;
}
Vector l;
synchronized (this) {
l = (Vector) m_batchClassifierListeners.clone();
}
if (l.size() > 0) {
for (int i = 0; i < l.size(); i++) {
((BatchClassifierListener) l.elementAt(i)).acceptClassifier(ce);
}
}
}
/**
* Add a graph listener
*
* @param cl a GraphListener
value
*/
public synchronized void addGraphListener(GraphListener cl) {
m_graphListeners.addElement(cl);
}
/**
* Remove a graph listener
*
* @param cl a GraphListener
value
*/
public synchronized void removeGraphListener(GraphListener cl) {
m_graphListeners.remove(cl);
}
/**
* Notify all graph listeners of a graph event
*
* @param ge a GraphEvent
value
*/
private void notifyGraphListeners(GraphEvent ge) {
Vector l;
synchronized (this) {
l = (Vector) m_graphListeners.clone();
}
if (l.size() > 0) {
for (int i = 0; i < l.size(); i++) {
((GraphListener) l.elementAt(i)).acceptGraph(ge);
}
}
}
/**
* Add a text listener
*
* @param cl a TextListener
value
*/
public synchronized void addTextListener(TextListener cl) {
m_textListeners.addElement(cl);
}
/**
* Remove a text listener
*
* @param cl a TextListener
value
*/
public synchronized void removeTextListener(TextListener cl) {
m_textListeners.remove(cl);
}
/**
* Notify all text listeners of a text event
*
* @param ge a TextEvent
value
*/
private void notifyTextListeners(TextEvent ge) {
Vector l;
synchronized (this) {
l = (Vector) m_textListeners.clone();
}
if (l.size() > 0) {
for (int i = 0; i < l.size(); i++) {
((TextListener) l.elementAt(i)).acceptText(ge);
}
}
}
/**
* Add an incremental classifier listener
*
* @param cl an IncrementalClassifierListener
value
*/
public synchronized void addIncrementalClassifierListener(
IncrementalClassifierListener cl) {
m_incrementalClassifierListeners.add(cl);
}
/**
* Remove an incremental classifier listener
*
* @param cl an IncrementalClassifierListener
value
*/
public synchronized void removeIncrementalClassifierListener(
IncrementalClassifierListener cl) {
m_incrementalClassifierListeners.remove(cl);
}
/**
* Notify all incremental classifier listeners of an incremental classifier
* event
*
* @param ce an IncrementalClassifierEvent
value
*/
private void notifyIncrementalClassifierListeners(
IncrementalClassifierEvent ce) {
// don't do anything if the thread that we've been running in has been
// interrupted
if (Thread.currentThread().isInterrupted()) {
return;
}
Vector l;
synchronized (this) {
l = (Vector) m_incrementalClassifierListeners.clone();
}
if (l.size() > 0) {
for (int i = 0; i < l.size(); i++) {
((IncrementalClassifierListener) l.elementAt(i)).acceptClassifier(ce);
}
}
}
/**
* Returns true if, at this time, the object will accept a connection with
* respect to the named event
*
* @param eventName the event
* @return true if the object will accept a connection
*/
public boolean connectionAllowed(String eventName) {
/*
* if (eventName.compareTo("instance") == 0) { if (!(m_Classifier instanceof
* weka.classifiers.UpdateableClassifier)) { return false; } }
*/
if (m_listenees.containsKey(eventName)) {
return false;
}
return true;
}
/**
* Returns true if, at this time, the object will accept a connection
* according to the supplied EventSetDescriptor
*
* @param esd the EventSetDescriptor
* @return true if the object will accept a connection
*/
public boolean connectionAllowed(EventSetDescriptor esd) {
return connectionAllowed(esd.getName());
}
/**
* Notify this object that it has been registered as a listener with a source
* with respect to the named event
*
* @param eventName the event
* @param source the source with which this object has been registered as a
* listener
*/
public synchronized void connectionNotification(String eventName,
Object source) {
if (eventName.compareTo("instance") == 0) {
if (!(m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier)) {
if (m_log != null) {
String msg = statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_ConnectionNotification_Msg_Text_First")
+ m_ClassifierTemplate.getClass().getName()
+ Messages.getInstance().getString(
"Classifier_ConnectionNotification_Msg_Text_Second");
m_log.logMessage(Messages.getInstance().getString(
"Classifier_ConnectionNotification_LogMessage_Text_First")
+ msg);
m_log.statusMessage(msg);
}
}
}
if (connectionAllowed(eventName)) {
m_listenees.put(eventName, source);
/*
* if (eventName.compareTo("instance") == 0) { startIncrementalHandler();
* }
*/
}
}
/**
* Notify this object that it has been deregistered as a listener with a
* source with respect to the supplied event name
*
* @param eventName the event
* @param source the source with which this object has been registered as a
* listener
*/
public synchronized void disconnectionNotification(String eventName,
Object source) {
m_listenees.remove(eventName);
if (eventName.compareTo("instance") == 0) {
stop(); // kill the incremental handler thread if it is running
}
}
/**
* Function used to stop code that calls acceptTrainingSet. This is needed as
* classifier construction is performed inside a separate thread of execution.
*
* @param tf a boolean
value
*/
private synchronized void block(boolean tf) {
if (tf) {
try {
// only block if thread is still doing something useful!
if (m_state != IDLE) {
wait();
}
} catch (InterruptedException ex) {
}
} else {
notifyAll();
}
}
/**
* Stop any classifier action
*/
public void stop() {
// tell all listenees (upstream beans) to stop
Enumeration en = m_listenees.keys();
while (en.hasMoreElements()) {
Object tempO = m_listenees.get(en.nextElement());
if (tempO instanceof BeanCommon) {
((BeanCommon) tempO).stop();
}
}
// shutdown the executor pool and reclaim storage
if (m_executorPool != null) {
m_executorPool.shutdownNow();
m_executorPool.purge();
m_executorPool = null;
}
m_block = false;
m_batchStarted = false;
m_visual.setStatic();
if (m_oldText.length() > 0) {
// m_visual.setText(m_oldText);
}
// stop the build thread
/*
* if (m_buildThread != null) { m_buildThread.interrupt();
* m_buildThread.stop(); m_buildThread = null; m_visual.setStatic(); }
*/
}
public void loadModel() {
try {
if (m_fileChooser == null) {
// i.e. after de-serialization
setupFileChooser();
}
int returnVal = m_fileChooser.showOpenDialog(this);
if (returnVal == JFileChooser.APPROVE_OPTION) {
File loadFrom = m_fileChooser.getSelectedFile();
// add extension if necessary
if (m_fileChooser.getFileFilter() == m_binaryFilter) {
if (!loadFrom.getName().toLowerCase().endsWith("." + FILE_EXTENSION)) {
loadFrom = new File(loadFrom.getParent(), loadFrom.getName() + "."
+ FILE_EXTENSION);
}
} else if (m_fileChooser.getFileFilter() == m_KOMLFilter) {
if (!loadFrom.getName().toLowerCase()
.endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION)) {
loadFrom = new File(loadFrom.getParent(), loadFrom.getName()
+ KOML.FILE_EXTENSION + FILE_EXTENSION);
}
} else if (m_fileChooser.getFileFilter() == m_XStreamFilter) {
if (!loadFrom.getName().toLowerCase()
.endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION)) {
loadFrom = new File(loadFrom.getParent(), loadFrom.getName()
+ XStream.FILE_EXTENSION + FILE_EXTENSION);
}
}
weka.classifiers.Classifier temp = null;
Instances tempHeader = null;
// KOML ?
if ((KOML.isPresent())
&& (loadFrom.getAbsolutePath().toLowerCase()
.endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION))) {
Vector v = (Vector) KOML.read(loadFrom.getAbsolutePath());
temp = (weka.classifiers.Classifier) v.elementAt(0);
if (v.size() == 2) {
// try and grab the header
tempHeader = (Instances) v.elementAt(1);
}
} /* XStream */else if ((XStream.isPresent())
&& (loadFrom.getAbsolutePath().toLowerCase()
.endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION))) {
Vector v = (Vector) XStream.read(loadFrom.getAbsolutePath());
temp = (weka.classifiers.Classifier) v.elementAt(0);
if (v.size() == 2) {
// try and grab the header
tempHeader = (Instances) v.elementAt(1);
}
} /* binary */else {
ObjectInputStream is = new ObjectInputStream(new BufferedInputStream(
new FileInputStream(loadFrom)));
// try and read the model
temp = (weka.classifiers.Classifier) is.readObject();
// try and read the header (if present)
try {
tempHeader = (Instances) is.readObject();
} catch (Exception ex) {
// System.err.println("No header...");
// quietly ignore
}
is.close();
}
// Update name and icon
setTrainedClassifier(temp);
// restore header
m_trainingSet = tempHeader;
if (m_log != null) {
m_log
.statusMessage(statusMessagePrefix()
+ Messages
.getInstance()
.getString(
"Classifier_ConnectionNotification_StatusMessage_Text_First"));
m_log.logMessage(Messages.getInstance().getString(
"Classifier_ConnectionNotification_LogMessage_Text_Second")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_ConnectionNotification_LogMessage_Text_Third")
+ m_Classifier.getClass().toString());
}
}
} catch (Exception ex) {
JOptionPane
.showMessageDialog(
Classifier.this,
Messages
.getInstance()
.getString(
"Classifier_ConnectionNotification_JOptionPane_ShowMessageDialog_Text_First"),
Messages
.getInstance()
.getString(
"Classifier_ConnectionNotification_JOptionPane_ShowMessageDialog_Text_Second"),
JOptionPane.ERROR_MESSAGE);
if (m_log != null) {
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_ConnectionNotification_StatusMessage_Text_Second"));
m_log.logMessage(Messages.getInstance().getString(
"Classifier_ConnectionNotification_LogMessage_Text_Fourth")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_ConnectionNotification_LogMessage_Text_Fifth")
+ ex.getMessage());
}
}
}
public void saveModel() {
try {
if (m_fileChooser == null) {
// i.e. after de-serialization
setupFileChooser();
}
int returnVal = m_fileChooser.showSaveDialog(this);
if (returnVal == JFileChooser.APPROVE_OPTION) {
File saveTo = m_fileChooser.getSelectedFile();
String fn = saveTo.getAbsolutePath();
if (m_fileChooser.getFileFilter() == m_binaryFilter) {
if (!fn.toLowerCase().endsWith("." + FILE_EXTENSION)) {
fn += "." + FILE_EXTENSION;
}
} else if (m_fileChooser.getFileFilter() == m_KOMLFilter) {
if (!fn.toLowerCase().endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION)) {
fn += KOML.FILE_EXTENSION + FILE_EXTENSION;
}
} else if (m_fileChooser.getFileFilter() == m_XStreamFilter) {
if (!fn.toLowerCase().endsWith(
XStream.FILE_EXTENSION + FILE_EXTENSION)) {
fn += XStream.FILE_EXTENSION + FILE_EXTENSION;
}
}
saveTo = new File(fn);
// now serialize model
// KOML?
if ((KOML.isPresent())
&& saveTo.getAbsolutePath().toLowerCase()
.endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION)) {
SerializedModelSaver.saveKOML(saveTo, m_Classifier,
(m_trainingSet != null) ? new Instances(m_trainingSet, 0) : null);
/*
* Vector v = new Vector(); v.add(m_Classifier); if (m_trainingSet !=
* null) { v.add(new Instances(m_trainingSet, 0)); } v.trimToSize();
* KOML.write(saveTo.getAbsolutePath(), v);
*/
} /* XStream */else if ((XStream.isPresent())
&& saveTo.getAbsolutePath().toLowerCase()
.endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION)) {
SerializedModelSaver.saveXStream(saveTo, m_Classifier,
(m_trainingSet != null) ? new Instances(m_trainingSet, 0) : null);
/*
* Vector v = new Vector(); v.add(m_Classifier); if (m_trainingSet !=
* null) { v.add(new Instances(m_trainingSet, 0)); } v.trimToSize();
* XStream.write(saveTo.getAbsolutePath(), v);
*/
} else /* binary */{
ObjectOutputStream os = new ObjectOutputStream(
new BufferedOutputStream(new FileOutputStream(saveTo)));
os.writeObject(m_Classifier);
if (m_trainingSet != null) {
Instances header = new Instances(m_trainingSet, 0);
os.writeObject(header);
}
os.close();
}
if (m_log != null) {
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_SaveModel_StatusMessage_Text_First"));
m_log.logMessage(Messages.getInstance().getString(
"Classifier_SaveModel_LogMessage_Text_First")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_SaveModel_LogMessage_Text_Second")
+ getCustomName());
}
}
} catch (Exception ex) {
JOptionPane
.showMessageDialog(
Classifier.this,
Messages
.getInstance()
.getString(
"Classifier_SaveModel_JOptionPane_ShowMessageDialog_Text_First"),
Messages
.getInstance()
.getString(
"Classifier_SaveModel_JOptionPane_ShowMessageDialog_Text_Second"),
JOptionPane.ERROR_MESSAGE);
if (m_log != null) {
m_log.statusMessage(statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_SaveModel_StatusMessage_Text_Second"));
m_log.logMessage(Messages.getInstance().getString(
"Classifier_SaveModel_LogMessage_Text_Third")
+ statusMessagePrefix()
+ Messages.getInstance().getString(
"Classifier_SaveModel_LogMessage_Text_Fourth")
+ getCustomName() + ex.getMessage());
}
}
}
/**
* Set a logger
*
* @param logger a Logger
value
*/
public void setLog(Logger logger) {
m_log = logger;
}
/**
* Return an enumeration of requests that can be made by the user
*
* @return an Enumeration
value
*/
public Enumeration enumerateRequests() {
Vector newVector = new Vector(0);
if (m_executorPool != null
&& (m_executorPool.getQueue().size() > 0 || m_executorPool
.getActiveCount() > 0)) {
newVector.addElement("Stop");
}
if ((m_executorPool == null || (m_executorPool.getQueue().size() == 0 && m_executorPool
.getActiveCount() == 0)) && m_Classifier != null) {
newVector.addElement("Save model");
}
if (m_executorPool == null
|| (m_executorPool.getQueue().size() == 0 && m_executorPool
.getActiveCount() == 0)) {
newVector.addElement("Load model");
}
return newVector.elements();
}
/**
* Perform a particular request
*
* @param request the request to perform
* @exception IllegalArgumentException if an error occurs
*/
public void performRequest(String request) {
if (request.compareTo("Stop") == 0) {
stop();
} else if (request.compareTo("Save model") == 0) {
saveModel();
} else if (request.compareTo("Load model") == 0) {
loadModel();
} else {
throw new IllegalArgumentException(request
+ Messages.getInstance().getString(
"Classifier_PerformRequest_IllegalArgumentException_Text"));
}
}
/**
* Returns true, if at the current time, the event described by the supplied
* event descriptor could be generated.
*
* @param esd an EventSetDescriptor
value
* @return a boolean
value
*/
public boolean eventGeneratable(EventSetDescriptor esd) {
String eventName = esd.getName();
return eventGeneratable(eventName);
}
/**
* @param name of the event to check
* @return true if eventName is one of the possible events that this component
* can generate
*/
private boolean generatableEvent(String eventName) {
if (eventName.compareTo("graph") == 0 || eventName.compareTo("text") == 0
|| eventName.compareTo("batchClassifier") == 0
|| eventName.compareTo("incrementalClassifier") == 0) {
return true;
}
return false;
}
/**
* Returns true, if at the current time, the named event could be generated.
* Assumes that the supplied event name is an event that could be generated by
* this bean
*
* @param eventName the name of the event in question
* @return true if the named event could be generated at this point in time
*/
public boolean eventGeneratable(String eventName) {
if (!generatableEvent(eventName)) {
return false;
}
if (eventName.compareTo("graph") == 0) {
// can't generate a GraphEvent if classifier is not drawable
if (!(m_ClassifierTemplate instanceof weka.core.Drawable)) {
return false;
}
// need to have a training set before the classifier
// can generate a graph!
if (!m_listenees.containsKey("trainingSet")) {
return false;
}
// Source needs to be able to generate a trainingSet
// before we can generate a graph
Object source = m_listenees.get("trainingSet");
if (source instanceof EventConstraints) {
if (!((EventConstraints) source).eventGeneratable("trainingSet")) {
return false;
}
}
}
if (eventName.compareTo("batchClassifier") == 0) {
/*
* if (!m_listenees.containsKey("testSet")) { return false; } if
* (!m_listenees.containsKey("trainingSet") && m_trainingSet == null) {
* return false; }
*/
if (!m_listenees.containsKey("testSet")
&& !m_listenees.containsKey("trainingSet")) {
return false;
}
Object source = m_listenees.get("testSet");
if (source instanceof EventConstraints) {
if (!((EventConstraints) source).eventGeneratable("testSet")) {
return false;
}
}
/*
* source = m_listenees.get("trainingSet"); if (source instanceof
* EventConstraints) { if
* (!((EventConstraints)source).eventGeneratable("trainingSet")) { return
* false; } }
*/
}
if (eventName.compareTo("text") == 0) {
if (!m_listenees.containsKey("trainingSet")
&& !m_listenees.containsKey("instance")) {
return false;
}
Object source = m_listenees.get("trainingSet");
if (source != null && source instanceof EventConstraints) {
if (!((EventConstraints) source).eventGeneratable("trainingSet")) {
return false;
}
}
source = m_listenees.get("instance");
if (source != null && source instanceof EventConstraints) {
if (!((EventConstraints) source).eventGeneratable("instance")) {
return false;
}
}
}
if (eventName.compareTo("incrementalClassifier") == 0) {
/*
* if (!(m_Classifier instanceof weka.classifiers.UpdateableClassifier)) {
* return false; }
*/
if (!m_listenees.containsKey("instance")) {
return false;
}
Object source = m_listenees.get("instance");
if (source instanceof EventConstraints) {
if (!((EventConstraints) source).eventGeneratable("instance")) {
return false;
}
}
}
return true;
}
/**
* Returns true if. at this time, the bean is busy with some (i.e. perhaps a
* worker thread is performing some calculation).
*
* @return true if the bean is busy.
*/
public boolean isBusy() {
if (m_executorPool == null
|| (m_executorPool.getQueue().size() == 0 && m_executorPool
.getActiveCount() == 0) && m_state == IDLE) {
return false;
}
/*
* System.err.println("isBusy() Q:" + m_executorPool.getQueue().size()
* +" A:" + m_executorPool.getActiveCount());
*/
return true;
}
private String statusMessagePrefix() {
return getCustomName()
+ "$"
+ hashCode()
+ "|"
+ ((m_Classifier instanceof OptionHandler && Utils.joinOptions(
((OptionHandler) m_ClassifierTemplate).getOptions()).length() > 0) ? Utils
.joinOptions(((OptionHandler) m_ClassifierTemplate).getOptions())
+ "|" : "");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy