All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.associations.Apriori Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Apriori.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.associations;

import java.util.Enumeration;
import java.util.Hashtable;

import weka.core.AttributeStats;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.FastVector;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

/**
 *  Class implementing an Apriori-type algorithm.
 * Iteratively reduces the minimum support until it finds the required number of
 * rules with the given minimum confidence.
* The algorithm has an option to mine class association rules. It is adapted as * explained in the second reference.
*
* For more information see:
*
* R. Agrawal, R. Srikant: Fast Algorithms for Mining Association Rules in Large * Databases. In: 20th International Conference on Very Large Data Bases, * 478-499, 1994.
*
* Bing Liu, Wynne Hsu, Yiming Ma: Integrating Classification and Association * Rule Mining. In: Fourth International Conference on Knowledge Discovery and * Data Mining, 80-86, 1998. *

* * * BibTeX: * *

 * @inproceedings{Agrawal1994,
 *    author = {R. Agrawal and R. Srikant},
 *    booktitle = {20th International Conference on Very Large Data Bases},
 *    pages = {478-499},
 *    publisher = {Morgan Kaufmann, Los Altos, CA},
 *    title = {Fast Algorithms for Mining Association Rules in Large Databases},
 *    year = {1994}
 * }
 * 
 * @inproceedings{Liu1998,
 *    author = {Bing Liu and Wynne Hsu and Yiming Ma},
 *    booktitle = {Fourth International Conference on Knowledge Discovery and Data Mining},
 *    pages = {80-86},
 *    publisher = {AAAI Press},
 *    title = {Integrating Classification and Association Rule Mining},
 *    year = {1998}
 * }
 * 
*

* * * Valid options are: *

* *

 * -N <required number of rules output>
 *  The required number of rules. (default = 10)
 * 
* *
 * -T <0=confidence | 1=lift | 2=leverage | 3=Conviction>
 *  The metric type by which to rank rules. (default = confidence)
 * 
* *
 * -C <minimum metric score of a rule>
 *  The minimum confidence of a rule. (default = 0.9)
 * 
* *
 * -D <delta for minimum support>
 *  The delta by which the minimum support is decreased in
 *  each iteration. (default = 0.05)
 * 
* *
 * -U <upper bound for minimum support>
 *  Upper bound for minimum support. (default = 1.0)
 * 
* *
 * -M <lower bound for minimum support>
 *  The lower bound for the minimum support. (default = 0.1)
 * 
* *
 * -S <significance level>
 *  If used, rules are tested for significance at
 *  the given level. Slower. (default = no significance testing)
 * 
* *
 * -I
 *  If set the itemsets found are also output. (default = no)
 * 
* *
 * -R
 *  Remove columns that contain all missing values (default = no)
 * 
* *
 * -V
 *  Report progress iteratively. (default = no)
 * 
* *
 * -A
 *  If set class association rules are mined. (default = no)
 * 
* *
 * -c <the class index>
 *  The class index. (default = last)
 * 
* * * * @author Eibe Frank ([email protected]) * @author Mark Hall ([email protected]) * @author Stefan Mutter ([email protected]) * @version $Revision: 9096 $ */ public class Apriori extends AbstractAssociator implements OptionHandler, CARuleMiner, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 3277498842319212687L; /** The minimum support. */ protected double m_minSupport; /** The upper bound on the support */ protected double m_upperBoundMinSupport; /** The lower bound for the minimum support. */ protected double m_lowerBoundMinSupport; /** Metric type: Confidence */ protected static final int CONFIDENCE = 0; /** Metric type: Lift */ protected static final int LIFT = 1; /** Metric type: Leverage */ protected static final int LEVERAGE = 2; /** Metric type: Conviction */ protected static final int CONVICTION = 3; /** Metric types. */ public static final Tag[] TAGS_SELECTION = { new Tag(CONFIDENCE, "Confidence"), new Tag(LIFT, "Lift"), new Tag(LEVERAGE, "Leverage"), new Tag(CONVICTION, "Conviction") }; /** The selected metric type. */ protected int m_metricType = CONFIDENCE; /** The minimum metric score. */ protected double m_minMetric; /** The maximum number of rules that are output. */ protected int m_numRules; /** Delta by which m_minSupport is decreased in each iteration. */ protected double m_delta; /** Significance level for optional significance test. */ protected double m_significanceLevel; /** Number of cycles used before required number of rules was one. */ protected int m_cycles; /** The set of all sets of itemsets L. */ protected FastVector m_Ls; /** The same information stored in hash tables. */ protected FastVector m_hashtables; /** The list of all generated rules. */ protected FastVector[] m_allTheRules; /** * The instances (transactions) to be used for generating the association * rules. */ protected Instances m_instances; /** Output itemsets found? */ protected boolean m_outputItemSets; /** Remove columns with all missing values */ protected boolean m_removeMissingCols; /** Report progress iteratively */ protected boolean m_verbose; /** Only the class attribute of all Instances. */ protected Instances m_onlyClass; /** The class index. */ protected int m_classIndex; /** Flag indicating whether class association rules are mined. */ protected boolean m_car; /** * Returns a string describing this associator * * @return a description of the evaluator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Class implementing an Apriori-type algorithm. Iteratively reduces " + "the minimum support until it finds the required number of rules with " + "the given minimum confidence.\n" + "The algorithm has an option to mine class association rules. It is " + "adapted as explained in the second reference.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, Messages.getInstance().getString("APRIORI_AUTHOR")); result.setValue(Field.TITLE, "Fast Algorithms for Mining Association Rules in Large Databases"); result.setValue(Field.BOOKTITLE, "20th International Conference on Very Large Data Bases"); result.setValue(Field.YEAR, "1994"); result.setValue(Field.PAGES, "478-499"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann, Los Altos, CA"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Bing Liu and Wynne Hsu and Yiming Ma"); additional.setValue(Field.TITLE, "Integrating Classification and Association Rule Mining"); additional .setValue(Field.BOOKTITLE, "Fourth International Conference on Knowledge Discovery and Data Mining"); additional.setValue(Field.YEAR, "1998"); additional.setValue(Field.PAGES, "80-86"); additional.setValue(Field.PUBLISHER, "AAAI Press"); return result; } /** * Constructor that allows to sets default values for the minimum confidence * and the maximum number of rules the minimum confidence. */ public Apriori() { resetOptions(); } /** * Resets the options to the default values. */ public void resetOptions() { m_removeMissingCols = false; m_verbose = false; m_delta = 0.05; m_minMetric = 0.90; m_numRules = 10; m_lowerBoundMinSupport = 0.1; m_upperBoundMinSupport = 1.0; m_significanceLevel = -1; m_outputItemSets = false; m_car = false; m_classIndex = -1; } /** * Removes columns that are all missing from the data * * @param instances the instances * @return a new set of instances with all missing columns removed * @throws Exception if something goes wrong */ protected Instances removeMissingColumns(Instances instances) throws Exception { int numInstances = instances.numInstances(); StringBuffer deleteString = new StringBuffer(); int removeCount = 0; boolean first = true; int maxCount = 0; for (int i = 0; i < instances.numAttributes(); i++) { AttributeStats as = instances.attributeStats(i); if (m_upperBoundMinSupport == 1.0 && maxCount != numInstances) { // see if we can decrease this by looking for the most frequent value int[] counts = as.nominalCounts; if (counts[Utils.maxIndex(counts)] > maxCount) { maxCount = counts[Utils.maxIndex(counts)]; } } if (as.missingCount == numInstances) { if (first) { deleteString.append((i + 1)); first = false; } else { deleteString.append("," + (i + 1)); } removeCount++; } } if (m_verbose) { System.err.println("Removed : " + removeCount + " columns with all missing " + "values."); } if (m_upperBoundMinSupport == 1.0 && maxCount != numInstances) { m_upperBoundMinSupport = (double) maxCount / (double) numInstances; if (m_verbose) { System.err.println("Setting upper bound min support to : " + m_upperBoundMinSupport); } } if (deleteString.toString().length() > 0) { Remove af = new Remove(); af.setAttributeIndices(deleteString.toString()); af.setInvertSelection(false); af.setInputFormat(instances); Instances newInst = Filter.useFilter(instances, af); return newInst; } return instances; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class (can handle a nominal class if CAR rules are selected). This result.enable(Capability.NO_CLASS); result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Method that generates all large itemsets with a minimum support, and from * these all association rules with a minimum confidence. * * @param instances the instances to be used for generating the associations * @throws Exception if rules can't be built successfully */ public void buildAssociations(Instances instances) throws Exception { double[] confidences, supports; int[] indices; FastVector[] sortedRuleSet; int necSupport = 0; instances = new Instances(instances); if (m_removeMissingCols) { instances = removeMissingColumns(instances); } if (m_car && m_metricType != CONFIDENCE) throw new Exception("For CAR-Mining metric type has to be confidence!"); // only set class index if CAR is requested if (m_car) { if (m_classIndex == -1) { instances.setClassIndex(instances.numAttributes() - 1); } else if (m_classIndex <= instances.numAttributes() && m_classIndex > 0) { instances.setClassIndex(m_classIndex - 1); } else { throw new Exception("Invalid class index."); } } // can associator handle the data? getCapabilities().testWithFail(instances); m_cycles = 0; // make sure that the lower bound is equal to at least one instance double lowerBoundMinSupportToUse = (m_lowerBoundMinSupport * instances.numInstances() < 1.0) ? 1.0 / instances.numInstances() : m_lowerBoundMinSupport; if (m_car) { // m_instances does not contain the class attribute m_instances = LabeledItemSet.divide(instances, false); // m_onlyClass contains only the class attribute m_onlyClass = LabeledItemSet.divide(instances, true); } else m_instances = instances; if (m_car && m_numRules == Integer.MAX_VALUE) { // Set desired minimum support m_minSupport = lowerBoundMinSupportToUse; } else { // Decrease minimum support until desired number of rules found. m_minSupport = m_upperBoundMinSupport - m_delta; m_minSupport = (m_minSupport < lowerBoundMinSupportToUse) ? lowerBoundMinSupportToUse : m_minSupport; } do { // Reserve space for variables m_Ls = new FastVector(); m_hashtables = new FastVector(); m_allTheRules = new FastVector[6]; m_allTheRules[0] = new FastVector(); m_allTheRules[1] = new FastVector(); m_allTheRules[2] = new FastVector(); if (m_metricType != CONFIDENCE || m_significanceLevel != -1) { m_allTheRules[3] = new FastVector(); m_allTheRules[4] = new FastVector(); m_allTheRules[5] = new FastVector(); } sortedRuleSet = new FastVector[6]; sortedRuleSet[0] = new FastVector(); sortedRuleSet[1] = new FastVector(); sortedRuleSet[2] = new FastVector(); if (m_metricType != CONFIDENCE || m_significanceLevel != -1) { sortedRuleSet[3] = new FastVector(); sortedRuleSet[4] = new FastVector(); sortedRuleSet[5] = new FastVector(); } if (!m_car) { // Find large itemsets and rules findLargeItemSets(); if (m_significanceLevel != -1 || m_metricType != CONFIDENCE) findRulesBruteForce(); else findRulesQuickly(); } else { findLargeCarItemSets(); findCarRulesQuickly(); } // prune rules for upper bound min support if (m_upperBoundMinSupport < 1.0) { pruneRulesForUpperBoundSupport(); } // Sort rules according to their support /* * supports = new double[m_allTheRules[2].size()]; for (int i = 0; i < * m_allTheRules[2].size(); i++) supports[i] = * (double)((AprioriItemSet)m_allTheRules[1].elementAt(i)).support(); * indices = Utils.stableSort(supports); for (int i = 0; i < * m_allTheRules[2].size(); i++) { * sortedRuleSet[0].addElement(m_allTheRules[0].elementAt(indices[i])); * sortedRuleSet[1].addElement(m_allTheRules[1].elementAt(indices[i])); * sortedRuleSet[2].addElement(m_allTheRules[2].elementAt(indices[i])); if * (m_metricType != CONFIDENCE || m_significanceLevel != -1) { * sortedRuleSet[3].addElement(m_allTheRules[3].elementAt(indices[i])); * sortedRuleSet[4].addElement(m_allTheRules[4].elementAt(indices[i])); * sortedRuleSet[5].addElement(m_allTheRules[5].elementAt(indices[i])); } * } */ int j = m_allTheRules[2].size() - 1; supports = new double[m_allTheRules[2].size()]; for (int i = 0; i < (j + 1); i++) supports[j - i] = ((double) ((ItemSet) m_allTheRules[1] .elementAt(j - i)).support()) * (-1); indices = Utils.stableSort(supports); for (int i = 0; i < (j + 1); i++) { sortedRuleSet[0].addElement(m_allTheRules[0].elementAt(indices[j - i])); sortedRuleSet[1].addElement(m_allTheRules[1].elementAt(indices[j - i])); sortedRuleSet[2].addElement(m_allTheRules[2].elementAt(indices[j - i])); if (m_metricType != CONFIDENCE || m_significanceLevel != -1) { sortedRuleSet[3].addElement(m_allTheRules[3] .elementAt(indices[j - i])); sortedRuleSet[4].addElement(m_allTheRules[4] .elementAt(indices[j - i])); sortedRuleSet[5].addElement(m_allTheRules[5] .elementAt(indices[j - i])); } } // Sort rules according to their confidence m_allTheRules[0].removeAllElements(); m_allTheRules[1].removeAllElements(); m_allTheRules[2].removeAllElements(); if (m_metricType != CONFIDENCE || m_significanceLevel != -1) { m_allTheRules[3].removeAllElements(); m_allTheRules[4].removeAllElements(); m_allTheRules[5].removeAllElements(); } confidences = new double[sortedRuleSet[2].size()]; int sortType = 2 + m_metricType; for (int i = 0; i < sortedRuleSet[2].size(); i++) confidences[i] = ((Double) sortedRuleSet[sortType].elementAt(i)) .doubleValue(); indices = Utils.stableSort(confidences); for (int i = sortedRuleSet[0].size() - 1; (i >= (sortedRuleSet[0].size() - m_numRules)) && (i >= 0); i--) { m_allTheRules[0].addElement(sortedRuleSet[0].elementAt(indices[i])); m_allTheRules[1].addElement(sortedRuleSet[1].elementAt(indices[i])); m_allTheRules[2].addElement(sortedRuleSet[2].elementAt(indices[i])); if (m_metricType != CONFIDENCE || m_significanceLevel != -1) { m_allTheRules[3].addElement(sortedRuleSet[3].elementAt(indices[i])); m_allTheRules[4].addElement(sortedRuleSet[4].elementAt(indices[i])); m_allTheRules[5].addElement(sortedRuleSet[5].elementAt(indices[i])); } } if (m_verbose) { if (m_Ls.size() > 1) { System.out.println(toString()); } } if (m_minSupport == lowerBoundMinSupportToUse || m_minSupport - m_delta > lowerBoundMinSupportToUse) m_minSupport -= m_delta; else m_minSupport = lowerBoundMinSupportToUse; necSupport = Math.round((float) ((m_minSupport * m_instances .numInstances()) + 0.5)); m_cycles++; } while ((m_allTheRules[0].size() < m_numRules) && (Utils.grOrEq(m_minSupport, lowerBoundMinSupportToUse)) /* (necSupport >= lowerBoundNumInstancesSupport) */ /* (Utils.grOrEq(m_minSupport, m_lowerBoundMinSupport)) */&& (necSupport >= 1)); m_minSupport += m_delta; } private void pruneRulesForUpperBoundSupport() { int necMaxSupport = (int) (m_upperBoundMinSupport * m_instances.numInstances() + 0.5); FastVector[] prunedRules = new FastVector[6]; for (int i = 0; i < 6; i++) { prunedRules[i] = new FastVector(); } for (int i = 0; i < m_allTheRules[0].size(); i++) { if (((ItemSet) m_allTheRules[1].elementAt(i)).support() <= necMaxSupport) { prunedRules[0].addElement(m_allTheRules[0].elementAt(i)); prunedRules[1].addElement(m_allTheRules[1].elementAt(i)); prunedRules[2].addElement(m_allTheRules[2].elementAt(i)); if (!m_car) { prunedRules[3].addElement(m_allTheRules[3].elementAt(i)); prunedRules[4].addElement(m_allTheRules[4].elementAt(i)); prunedRules[5].addElement(m_allTheRules[5].elementAt(i)); } } } m_allTheRules[0] = prunedRules[0]; m_allTheRules[1] = prunedRules[1]; m_allTheRules[2] = prunedRules[2]; m_allTheRules[3] = prunedRules[3]; m_allTheRules[4] = prunedRules[4]; m_allTheRules[5] = prunedRules[5]; } /** * Method that mines all class association rules with minimum support and with * a minimum confidence. * * @return an sorted array of FastVector (confidence depended) containing the * rules and metric information * @param data the instances for which class association rules should be mined * @throws Exception if rules can't be built successfully */ public FastVector[] mineCARs(Instances data) throws Exception { m_car = true; buildAssociations(data); return m_allTheRules; } /** * Gets the instances without the class atrribute. * * @return the instances without the class attribute. */ public Instances getInstancesNoClass() { return m_instances; } /** * Gets only the class attribute of the instances. * * @return the class attribute of all instances. */ public Instances getInstancesOnlyClass() { return m_onlyClass; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { String string1 = "\tThe required number of rules. (default = " + m_numRules + ")", string2 = "\tThe minimum confidence of a rule. (default = " + m_minMetric + ")", string3 = "\tThe delta by which the minimum support is decreased in\n", string4 = "\teach iteration. (default = " + m_delta + ")", string5 = "\tThe lower bound for the minimum support. (default = " + m_lowerBoundMinSupport + ")", string6 = "\tIf used, rules are tested for significance at\n", string7 = "\tthe given level. Slower. (default = no significance testing)", string8 = "\tIf set the itemsets found are also output. (default = no)", string9 = "\tIf set class association rules are mined. (default = no)", string10 = "\tThe class index. (default = last)", stringType = "\tThe metric type by which to rank rules. (default = " + "confidence)"; FastVector newVector = new FastVector(11); newVector.addElement(new Option(string1, "N", 1, "-N ")); newVector.addElement(new Option(stringType, "T", 1, "-T <0=confidence | 1=lift | " + "2=leverage | 3=Conviction>")); newVector.addElement(new Option(string2, "C", 1, "-C ")); newVector.addElement(new Option(string3 + string4, "D", 1, "-D ")); newVector.addElement(new Option("\tUpper bound for minimum support. " + "(default = 1.0)", "U", 1, "-U ")); newVector.addElement(new Option(string5, "M", 1, "-M ")); newVector.addElement(new Option(string6 + string7, "S", 1, "-S ")); newVector.addElement(new Option(string8, "I", 0, "-I")); newVector.addElement(new Option("\tRemove columns that contain " + "all missing values (default = no)", "R", 0, "-R")); newVector.addElement(new Option("\tReport progress iteratively. (default " + "= no)", "V", 0, "-V")); newVector.addElement(new Option(string9, "A", 0, "-A")); newVector.addElement(new Option(string10, "c", 1, "-c ")); return newVector.elements(); } /** * Parses a given list of options. *

* * Valid options are: *

* *

   * -N <required number of rules output>
   *  The required number of rules. (default = 10)
   * 
* *
   * -T <0=confidence | 1=lift | 2=leverage | 3=Conviction>
   *  The metric type by which to rank rules. (default = confidence)
   * 
* *
   * -C <minimum metric score of a rule>
   *  The minimum confidence of a rule. (default = 0.9)
   * 
* *
   * -D <delta for minimum support>
   *  The delta by which the minimum support is decreased in
   *  each iteration. (default = 0.05)
   * 
* *
   * -U <upper bound for minimum support>
   *  Upper bound for minimum support. (default = 1.0)
   * 
* *
   * -M <lower bound for minimum support>
   *  The lower bound for the minimum support. (default = 0.1)
   * 
* *
   * -S <significance level>
   *  If used, rules are tested for significance at
   *  the given level. Slower. (default = no significance testing)
   * 
* *
   * -I
   *  If set the itemsets found are also output. (default = no)
   * 
* *
   * -R
   *  Remove columns that contain all missing values (default = no)
   * 
* *
   * -V
   *  Report progress iteratively. (default = no)
   * 
* *
   * -A
   *  If set class association rules are mined. (default = no)
   * 
* *
   * -c <the class index>
   *  The class index. (default = last)
   * 
* * * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { resetOptions(); String numRulesString = Utils.getOption('N', options), minConfidenceString = Utils .getOption('C', options), deltaString = Utils.getOption('D', options), maxSupportString = Utils .getOption('U', options), minSupportString = Utils.getOption('M', options), significanceLevelString = Utils.getOption('S', options), classIndexString = Utils .getOption('c', options); String metricTypeString = Utils.getOption('T', options); if (metricTypeString.length() != 0) { setMetricType(new SelectedTag(Integer.parseInt(metricTypeString), TAGS_SELECTION)); } if (numRulesString.length() != 0) { m_numRules = Integer.parseInt(numRulesString); } if (classIndexString.length() != 0) { if (classIndexString.equalsIgnoreCase("last")) { m_classIndex = -1; } else if (classIndexString.equalsIgnoreCase("first")) { m_classIndex = 0; } else { m_classIndex = Integer.parseInt(classIndexString); } } if (minConfidenceString.length() != 0) { m_minMetric = (new Double(minConfidenceString)).doubleValue(); } if (deltaString.length() != 0) { m_delta = (new Double(deltaString)).doubleValue(); } if (maxSupportString.length() != 0) { setUpperBoundMinSupport((new Double(maxSupportString)).doubleValue()); } if (minSupportString.length() != 0) { m_lowerBoundMinSupport = (new Double(minSupportString)).doubleValue(); } if (significanceLevelString.length() != 0) { m_significanceLevel = (new Double(significanceLevelString)).doubleValue(); } m_outputItemSets = Utils.getFlag('I', options); m_car = Utils.getFlag('A', options); m_verbose = Utils.getFlag('V', options); setRemoveAllMissingCols(Utils.getFlag('R', options)); } /** * Gets the current settings of the Apriori object. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] options = new String[20]; int current = 0; if (m_outputItemSets) { options[current++] = "-I"; } if (getRemoveAllMissingCols()) { options[current++] = "-R"; } options[current++] = "-N"; options[current++] = "" + m_numRules; options[current++] = "-T"; options[current++] = "" + m_metricType; options[current++] = "-C"; options[current++] = "" + m_minMetric; options[current++] = "-D"; options[current++] = "" + m_delta; options[current++] = "-U"; options[current++] = "" + m_upperBoundMinSupport; options[current++] = "-M"; options[current++] = "" + m_lowerBoundMinSupport; options[current++] = "-S"; options[current++] = "" + m_significanceLevel; if (m_car) options[current++] = "-A"; if (m_verbose) options[current++] = "-V"; options[current++] = "-c"; options[current++] = "" + m_classIndex; while (current < options.length) { options[current++] = ""; } return options; } /** * Outputs the size of all the generated sets of itemsets and the rules. * * @return a string representation of the model */ @Override public String toString() { StringBuffer text = new StringBuffer(); if (m_Ls.size() <= 1) return "\nNo large itemsets and rules found!\n"; text.append("\nApriori\n=======\n\n"); text.append("Minimum support: " + Utils.doubleToString(m_minSupport, 2) + " (" + ((int) (m_minSupport * m_instances.numInstances() + 0.5)) + " instances)" + '\n'); text.append("Minimum metric <"); switch (m_metricType) { case CONFIDENCE: text.append("confidence>: "); break; case LIFT: text.append("lift>: "); break; case LEVERAGE: text.append("leverage>: "); break; case CONVICTION: text.append("conviction>: "); break; } text.append(Utils.doubleToString(m_minMetric, 2) + '\n'); if (m_significanceLevel != -1) text.append("Significance level: " + Utils.doubleToString(m_significanceLevel, 2) + '\n'); text.append("Number of cycles performed: " + m_cycles + '\n'); text.append("\nGenerated sets of large itemsets:\n"); if (!m_car) { for (int i = 0; i < m_Ls.size(); i++) { text.append("\nSize of set of large itemsets L(" + (i + 1) + "): " + ((FastVector) m_Ls.elementAt(i)).size() + '\n'); if (m_outputItemSets) { text.append("\nLarge Itemsets L(" + (i + 1) + "):\n"); for (int j = 0; j < ((FastVector) m_Ls.elementAt(i)).size(); j++) text.append(((AprioriItemSet) ((FastVector) m_Ls.elementAt(i)) .elementAt(j)).toString(m_instances) + "\n"); } } text.append("\nBest rules found:\n\n"); for (int i = 0; i < m_allTheRules[0].size(); i++) { text.append(Utils.doubleToString((double) i + 1, (int) (Math.log(m_numRules) / Math.log(10) + 1), 0) + ". " + ((AprioriItemSet) m_allTheRules[0].elementAt(i)) .toString(m_instances) + " ==> " + ((AprioriItemSet) m_allTheRules[1].elementAt(i)) .toString(m_instances) + " conf:(" + Utils.doubleToString( ((Double) m_allTheRules[2].elementAt(i)).doubleValue(), 2) + ")"); if (m_metricType != CONFIDENCE || m_significanceLevel != -1) { text.append((m_metricType == LIFT ? " <" : "") + " lift:(" + Utils.doubleToString( ((Double) m_allTheRules[3].elementAt(i)).doubleValue(), 2) + ")" + (m_metricType == LIFT ? ">" : "")); text.append((m_metricType == LEVERAGE ? " <" : "") + " lev:(" + Utils.doubleToString( ((Double) m_allTheRules[4].elementAt(i)).doubleValue(), 2) + ")"); text.append(" [" + (int) (((Double) m_allTheRules[4].elementAt(i)).doubleValue() * m_instances .numInstances()) + "]" + (m_metricType == LEVERAGE ? ">" : "")); text.append((m_metricType == CONVICTION ? " <" : "") + " conv:(" + Utils.doubleToString( ((Double) m_allTheRules[5].elementAt(i)).doubleValue(), 2) + ")" + (m_metricType == CONVICTION ? ">" : "")); } text.append('\n'); } } else { for (int i = 0; i < m_Ls.size(); i++) { text.append("\nSize of set of large itemsets L(" + (i + 1) + "): " + ((FastVector) m_Ls.elementAt(i)).size() + '\n'); if (m_outputItemSets) { text.append("\nLarge Itemsets L(" + (i + 1) + "):\n"); for (int j = 0; j < ((FastVector) m_Ls.elementAt(i)).size(); j++) { text.append(((ItemSet) ((FastVector) m_Ls.elementAt(i)) .elementAt(j)).toString(m_instances) + "\n"); text.append(((LabeledItemSet) ((FastVector) m_Ls.elementAt(i)) .elementAt(j)).m_classLabel + " "); text.append(((LabeledItemSet) ((FastVector) m_Ls.elementAt(i)) .elementAt(j)).support() + "\n"); } } } text.append("\nBest rules found:\n\n"); for (int i = 0; i < m_allTheRules[0].size(); i++) { text.append(Utils.doubleToString((double) i + 1, (int) (Math.log(m_numRules) / Math.log(10) + 1), 0) + ". " + ((ItemSet) m_allTheRules[0].elementAt(i)).toString(m_instances) + " ==> " + ((ItemSet) m_allTheRules[1].elementAt(i)).toString(m_onlyClass) + " conf:(" + Utils.doubleToString( ((Double) m_allTheRules[2].elementAt(i)).doubleValue(), 2) + ")"); text.append('\n'); } } return text.toString(); } /** * Returns the metric string for the chosen metric type * * @return a string describing the used metric for the interestingness of a * class association rule */ public String metricString() { switch (m_metricType) { case LIFT: return "lif"; case LEVERAGE: return "leverage"; case CONVICTION: return "conviction"; default: return "conf"; } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String removeAllMissingColsTipText() { return "Remove columns with all missing values."; } /** * Remove columns containing all missing values. * * @param r true if cols are to be removed. */ public void setRemoveAllMissingCols(boolean r) { m_removeMissingCols = r; } /** * Returns whether columns containing all missing values are to be removed * * @return true if columns are to be removed. */ public boolean getRemoveAllMissingCols() { return m_removeMissingCols; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String upperBoundMinSupportTipText() { return "Upper bound for minimum support. Start iteratively decreasing " + "minimum support from this value."; } /** * Get the value of upperBoundMinSupport. * * @return Value of upperBoundMinSupport. */ public double getUpperBoundMinSupport() { return m_upperBoundMinSupport; } /** * Set the value of upperBoundMinSupport. * * @param v Value to assign to upperBoundMinSupport. */ public void setUpperBoundMinSupport(double v) { m_upperBoundMinSupport = v; } /** * Sets the class index * * @param index the class index */ public void setClassIndex(int index) { m_classIndex = index; } /** * Gets the class index * * @return the index of the class attribute */ public int getClassIndex() { return m_classIndex; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String classIndexTipText() { return "Index of the class attribute. If set to -1, the last attribute is taken as class attribute."; } /** * Sets class association rule mining * * @param flag if class association rules are mined, false otherwise */ public void setCar(boolean flag) { m_car = flag; } /** * Gets whether class association ruels are mined * * @return true if class association rules are mined, false otherwise */ public boolean getCar() { return m_car; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String carTipText() { return "If enabled class association rules are mined instead of (general) association rules."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String lowerBoundMinSupportTipText() { return "Lower bound for minimum support."; } /** * Get the value of lowerBoundMinSupport. * * @return Value of lowerBoundMinSupport. */ public double getLowerBoundMinSupport() { return m_lowerBoundMinSupport; } /** * Set the value of lowerBoundMinSupport. * * @param v Value to assign to lowerBoundMinSupport. */ public void setLowerBoundMinSupport(double v) { m_lowerBoundMinSupport = v; } /** * Get the metric type * * @return the type of metric to use for ranking rules */ public SelectedTag getMetricType() { return new SelectedTag(m_metricType, TAGS_SELECTION); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String metricTypeTipText() { return "Set the type of metric by which to rank rules. Confidence is " + "the proportion of the examples covered by the premise that are also " + "covered by the consequence(Class association rules can only be mined using confidence). Lift is confidence divided by the " + "proportion of all examples that are covered by the consequence. This " + "is a measure of the importance of the association that is independent " + "of support. Leverage is the proportion of additional examples covered " + "by both the premise and consequence above those expected if the " + "premise and consequence were independent of each other. The total " + "number of examples that this represents is presented in brackets " + "following the leverage. Conviction is " + "another measure of departure from independence. Conviction is given " + "by P(premise)P(!consequence) / P(premise, !consequence)."; } /** * Set the metric type for ranking rules * * @param d the type of metric */ public void setMetricType(SelectedTag d) { if (d.getTags() == TAGS_SELECTION) { m_metricType = d.getSelectedTag().getID(); } if (m_metricType == CONFIDENCE) { setMinMetric(0.9); } if (m_metricType == LIFT || m_metricType == CONVICTION) { setMinMetric(1.1); } if (m_metricType == LEVERAGE) { setMinMetric(0.1); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minMetricTipText() { return "Minimum metric score. Consider only rules with scores higher than " + "this value."; } /** * Get the value of minConfidence. * * @return Value of minConfidence. */ public double getMinMetric() { return m_minMetric; } /** * Set the value of minConfidence. * * @param v Value to assign to minConfidence. */ public void setMinMetric(double v) { m_minMetric = v; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numRulesTipText() { return "Number of rules to find."; } /** * Get the value of numRules. * * @return Value of numRules. */ public int getNumRules() { return m_numRules; } /** * Set the value of numRules. * * @param v Value to assign to numRules. */ public void setNumRules(int v) { m_numRules = v; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String deltaTipText() { return "Iteratively decrease support by this factor. Reduces support " + "until min support is reached or required number of rules has been " + "generated."; } /** * Get the value of delta. * * @return Value of delta. */ public double getDelta() { return m_delta; } /** * Set the value of delta. * * @param v Value to assign to delta. */ public void setDelta(double v) { m_delta = v; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String significanceLevelTipText() { return "Significance level. Significance test (confidence metric only)."; } /** * Get the value of significanceLevel. * * @return Value of significanceLevel. */ public double getSignificanceLevel() { return m_significanceLevel; } /** * Set the value of significanceLevel. * * @param v Value to assign to significanceLevel. */ public void setSignificanceLevel(double v) { m_significanceLevel = v; } /** * Sets whether itemsets are output as well * * @param flag true if itemsets are to be output as well */ public void setOutputItemSets(boolean flag) { m_outputItemSets = flag; } /** * Gets whether itemsets are output as well * * @return true if itemsets are output as well */ public boolean getOutputItemSets() { return m_outputItemSets; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String outputItemSetsTipText() { return "If enabled the itemsets are output as well."; } /** * Sets verbose mode * * @param flag true if algorithm should be run in verbose mode */ public void setVerbose(boolean flag) { m_verbose = flag; } /** * Gets whether algorithm is run in verbose mode * * @return true if algorithm is run in verbose mode */ public boolean getVerbose() { return m_verbose; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String verboseTipText() { return "If enabled the algorithm will be run in verbose mode."; } /** * Method that finds all large itemsets for the given set of instances. * * @throws Exception if an attribute is numeric */ private void findLargeItemSets() throws Exception { FastVector kMinusOneSets, kSets; Hashtable hashtable; int necSupport, necMaxSupport, i = 0; // Find large itemsets // minimum support necSupport = (int) (m_minSupport * m_instances.numInstances() + 0.5); necMaxSupport = (int) (m_upperBoundMinSupport * m_instances.numInstances() + 0.5); kSets = AprioriItemSet.singletons(m_instances); AprioriItemSet.upDateCounters(kSets, m_instances); kSets = AprioriItemSet.deleteItemSets(kSets, necSupport, m_instances.numInstances()); if (kSets.size() == 0) return; do { m_Ls.addElement(kSets); kMinusOneSets = kSets; kSets = AprioriItemSet.mergeAllItemSets(kMinusOneSets, i, m_instances.numInstances()); hashtable = AprioriItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size()); m_hashtables.addElement(hashtable); kSets = AprioriItemSet.pruneItemSets(kSets, hashtable); AprioriItemSet.upDateCounters(kSets, m_instances); kSets = AprioriItemSet.deleteItemSets(kSets, necSupport, m_instances.numInstances()); i++; } while (kSets.size() > 0); } /** * Method that finds all association rules and performs significance test. * * @throws Exception if an attribute is numeric */ private void findRulesBruteForce() throws Exception { FastVector[] rules; // Build rules for (int j = 1; j < m_Ls.size(); j++) { FastVector currentItemSets = (FastVector) m_Ls.elementAt(j); Enumeration enumItemSets = currentItemSets.elements(); while (enumItemSets.hasMoreElements()) { AprioriItemSet currentItemSet = (AprioriItemSet) enumItemSets .nextElement(); // AprioriItemSet currentItemSet = new // AprioriItemSet((ItemSet)enumItemSets.nextElement()); rules = currentItemSet.generateRulesBruteForce(m_minMetric, m_metricType, m_hashtables, j + 1, m_instances.numInstances(), m_significanceLevel); for (int k = 0; k < rules[0].size(); k++) { m_allTheRules[0].addElement(rules[0].elementAt(k)); m_allTheRules[1].addElement(rules[1].elementAt(k)); m_allTheRules[2].addElement(rules[2].elementAt(k)); m_allTheRules[3].addElement(rules[3].elementAt(k)); m_allTheRules[4].addElement(rules[4].elementAt(k)); m_allTheRules[5].addElement(rules[5].elementAt(k)); } } } } /** * Method that finds all association rules. * * @throws Exception if an attribute is numeric */ private void findRulesQuickly() throws Exception { FastVector[] rules; // Build rules for (int j = 1; j < m_Ls.size(); j++) { FastVector currentItemSets = (FastVector) m_Ls.elementAt(j); Enumeration enumItemSets = currentItemSets.elements(); while (enumItemSets.hasMoreElements()) { AprioriItemSet currentItemSet = (AprioriItemSet) enumItemSets .nextElement(); // AprioriItemSet currentItemSet = new // AprioriItemSet((ItemSet)enumItemSets.nextElement()); rules = currentItemSet.generateRules(m_minMetric, m_hashtables, j + 1); for (int k = 0; k < rules[0].size(); k++) { m_allTheRules[0].addElement(rules[0].elementAt(k)); m_allTheRules[1].addElement(rules[1].elementAt(k)); m_allTheRules[2].addElement(rules[2].elementAt(k)); } } } } /** * * Method that finds all large itemsets for class association rules for the * given set of instances. * * @throws Exception if an attribute is numeric */ private void findLargeCarItemSets() throws Exception { FastVector kMinusOneSets, kSets; Hashtable hashtable; int necSupport, necMaxSupport, i = 0; // Find large itemsets // minimum support double nextMinSupport = m_minSupport * m_instances.numInstances(); double nextMaxSupport = m_upperBoundMinSupport * m_instances.numInstances(); if (Math.rint(nextMinSupport) == nextMinSupport) { necSupport = (int) nextMinSupport; } else { necSupport = Math.round((float) (nextMinSupport + 0.5)); } if (Math.rint(nextMaxSupport) == nextMaxSupport) { necMaxSupport = (int) nextMaxSupport; } else { necMaxSupport = Math.round((float) (nextMaxSupport + 0.5)); } // find item sets of length one kSets = LabeledItemSet.singletons(m_instances, m_onlyClass); LabeledItemSet.upDateCounters(kSets, m_instances, m_onlyClass); // check if a item set of lentgh one is frequent, if not delete it kSets = LabeledItemSet.deleteItemSets(kSets, necSupport, m_instances.numInstances()); if (kSets.size() == 0) return; do { m_Ls.addElement(kSets); kMinusOneSets = kSets; kSets = LabeledItemSet.mergeAllItemSets(kMinusOneSets, i, m_instances.numInstances()); hashtable = LabeledItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size()); kSets = LabeledItemSet.pruneItemSets(kSets, hashtable); LabeledItemSet.upDateCounters(kSets, m_instances, m_onlyClass); kSets = LabeledItemSet.deleteItemSets(kSets, necSupport, m_instances.numInstances()); i++; } while (kSets.size() > 0); } /** * Method that finds all class association rules. * * @throws Exception if an attribute is numeric */ private void findCarRulesQuickly() throws Exception { FastVector[] rules; // Build rules for (int j = 0; j < m_Ls.size(); j++) { FastVector currentLabeledItemSets = (FastVector) m_Ls.elementAt(j); Enumeration enumLabeledItemSets = currentLabeledItemSets.elements(); while (enumLabeledItemSets.hasMoreElements()) { LabeledItemSet currentLabeledItemSet = (LabeledItemSet) enumLabeledItemSets .nextElement(); rules = currentLabeledItemSet.generateRules(m_minMetric, false); for (int k = 0; k < rules[0].size(); k++) { m_allTheRules[0].addElement(rules[0].elementAt(k)); m_allTheRules[1].addElement(rules[1].elementAt(k)); m_allTheRules[2].addElement(rules[2].elementAt(k)); } } } } /** * returns all the rules * * @return all the rules * @see #m_allTheRules */ public FastVector[] getAllTheRules() { return m_allTheRules; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 9096 $"); } /** * Main method. * * @param args the commandline options */ public static void main(String[] args) { runAssociator(new Apriori(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy