All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.associations.PriorEstimation Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * PriorEstimation.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.associations;

import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.SpecialFunctions;
import weka.core.Utils;

import java.io.Serializable;
import java.util.Hashtable;
import java.util.Random;

/**
 * Class implementing the prior estimattion of the predictive apriori algorithm 
 * for mining association rules. 
 *
 * Reference: T. Scheffer (2001). Finding Association Rules That Trade Support 
 * Optimally against Confidence. Proc of the 5th European Conf.
 * on Principles and Practice of Knowledge Discovery in Databases (PKDD'01),
 * pp. 424-435. Freiburg, Germany: Springer-Verlag. 

* * @author Stefan Mutter ([email protected]) * @version $Revision: 1.7 $ */ public class PriorEstimation implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = 5570863216522496271L; /** The number of rnadom rules. */ protected int m_numRandRules; /** The number of intervals. */ protected int m_numIntervals; /** The random seed used for the random rule generation step. */ protected static final int SEED = 0; /** The maximum number of attributes for which a prior can be estimated. */ protected static final int MAX_N = 1024; /** The random number generator. */ protected Random m_randNum; /** The instances for which association rules are mined. */ protected Instances m_instances; /** Flag indicating whether standard association rules or class association rules are mined. */ protected boolean m_CARs; /** Hashtable to store the confidence values of randomly generated rules. */ protected Hashtable m_distribution; /** Hashtable containing the estimated prior probabilities. */ protected Hashtable m_priors; /** Sums up the confidences of all rules with a certain length. */ protected double m_sum; /** The mid points of the discrete intervals in which the interval [0,1] is divided. */ protected double[] m_midPoints; /** * Constructor * * @param instances the instances to be used for generating the associations * @param numRules the number of random rules used for generating the prior * @param numIntervals the number of intervals to discretise [0,1] * @param car flag indicating whether standard or class association rules are mined */ public PriorEstimation(Instances instances,int numRules,int numIntervals,boolean car) { m_instances = instances; m_CARs = car; m_numRandRules = numRules; m_numIntervals = numIntervals; m_randNum = m_instances.getRandomNumberGenerator(SEED); } /** * Calculates the prior distribution. * * @exception Exception if prior can't be estimated successfully */ public final void generateDistribution() throws Exception{ boolean jump; int i,maxLength = m_instances.numAttributes(), count =0,count1=0, ruleCounter; int [] itemArray; m_distribution = new Hashtable(maxLength*m_numIntervals); RuleItem current; ItemSet generate; if(m_instances.numAttributes() == 0) throw new Exception("Dataset has no attributes!"); if(m_instances.numAttributes() >= MAX_N) throw new Exception("Dataset has to many attributes for prior estimation!"); if(m_instances.numInstances() == 0) throw new Exception("Dataset has no instances!"); for (int h = 0; h < maxLength; h++) { if (m_instances.attribute(h).isNumeric()) throw new Exception("Can't handle numeric attributes!"); } if(m_numIntervals == 0 || m_numRandRules == 0) throw new Exception("Prior initialisation impossible"); //calculate mid points for the intervals midPoints(); //create random rules of length i and measure their support and if support >0 their confidence for(i = 1;i <= maxLength; i++){ m_sum = 0; int j = 0; count = 0; count1 = 0; while(j < m_numRandRules){ count++; jump =false; if(!m_CARs){ itemArray = randomRule(maxLength,i,m_randNum); current = splitItemSet(m_randNum.nextInt(i), itemArray); } else{ itemArray = randomCARule(maxLength,i,m_randNum); current = addCons(itemArray); } int [] ruleItem = new int[maxLength]; for(int k =0; k < itemArray.length;k++){ if(current.m_premise.m_items[k] != -1) ruleItem[k] = current.m_premise.m_items[k]; else if(current.m_consequence.m_items[k] != -1) ruleItem[k] = current.m_consequence.m_items[k]; else ruleItem[k] = -1; } ItemSet rule = new ItemSet(ruleItem); updateCounters(rule); ruleCounter = rule.m_counter; if(ruleCounter > 0) jump =true; updateCounters(current.m_premise); j++; if(jump){ buildDistribution((double)ruleCounter/(double)current.m_premise.m_counter, (double)i); } } //normalize if(m_sum > 0){ for(int w = 0; w < m_midPoints.length;w++){ String key = (String.valueOf(m_midPoints[w])).concat(String.valueOf((double)i)); Double oldValue = (Double)m_distribution.remove(key); if(oldValue == null){ m_distribution.put(key,new Double(1.0/m_numIntervals)); m_sum += 1.0/m_numIntervals; } else m_distribution.put(key,oldValue); } for(int w = 0; w < m_midPoints.length;w++){ double conf =0; String key = (String.valueOf(m_midPoints[w])).concat(String.valueOf((double)i)); Double oldValue = (Double)m_distribution.remove(key); if(oldValue != null){ conf = oldValue.doubleValue() / m_sum; m_distribution.put(key,new Double(conf)); } } } else{ for(int w = 0; w < m_midPoints.length;w++){ String key = (String.valueOf(m_midPoints[w])).concat(String.valueOf((double)i)); m_distribution.put(key,new Double(1.0/m_numIntervals)); } } } } /** * Constructs an item set of certain length randomly. * This method is used for standard association rule mining. * @param maxLength the number of attributes of the instances * @param actualLength the number of attributes that should be present in the item set * @param randNum the random number generator * @return a randomly constructed item set in form of an int array */ public final int[] randomRule(int maxLength, int actualLength, Random randNum){ int[] itemArray = new int[maxLength]; for(int k =0;k < itemArray.length;k++) itemArray[k] = -1; int help =actualLength; if(help == maxLength){ help = 0; for(int h = 0; h < itemArray.length; h++){ itemArray[h] = m_randNum.nextInt((m_instances.attribute(h)).numValues()); } } while(help > 0){ int mark = randNum.nextInt(maxLength); if(itemArray[mark] == -1){ help--; itemArray[mark] = m_randNum.nextInt((m_instances.attribute(mark)).numValues()); } } return itemArray; } /** * Constructs an item set of certain length randomly. * This method is used for class association rule mining. * @param maxLength the number of attributes of the instances * @param actualLength the number of attributes that should be present in the item set * @param randNum the random number generator * @return a randomly constructed item set in form of an int array */ public final int[] randomCARule(int maxLength, int actualLength, Random randNum){ int[] itemArray = new int[maxLength]; for(int k =0;k < itemArray.length;k++) itemArray[k] = -1; if(actualLength == 1) return itemArray; int help =actualLength-1; if(help == maxLength-1){ help = 0; for(int h = 0; h < itemArray.length; h++){ if(h != m_instances.classIndex()){ itemArray[h] = m_randNum.nextInt((m_instances.attribute(h)).numValues()); } } } while(help > 0){ int mark = randNum.nextInt(maxLength); if(itemArray[mark] == -1 && mark != m_instances.classIndex()){ help--; itemArray[mark] = m_randNum.nextInt((m_instances.attribute(mark)).numValues()); } } return itemArray; } /** * updates the distribution of the confidence values. * For every confidence value the interval to which it belongs is searched * and the confidence is added to the confidence already found in this * interval. * @param conf the confidence of the randomly created rule * @param length the legnth of the randomly created rule */ public final void buildDistribution(double conf, double length){ double mPoint = findIntervall(conf); String key = (String.valueOf(mPoint)).concat(String.valueOf(length)); m_sum += conf; Double oldValue = (Double)m_distribution.remove(key); if(oldValue != null) conf = conf + oldValue.doubleValue(); m_distribution.put(key,new Double(conf)); } /** * searches the mid point of the interval a given confidence value falls into * @param conf the confidence of a rule * @return the mid point of the interval the confidence belongs to */ public final double findIntervall(double conf){ if(conf == 1.0) return m_midPoints[m_midPoints.length-1]; int end = m_midPoints.length-1; int start = 0; while (Math.abs(end-start) > 1) { int mid = (start + end) / 2; if (conf > m_midPoints[mid]) start = mid+1; if (conf < m_midPoints[mid]) end = mid-1; if(conf == m_midPoints[mid]) return m_midPoints[mid]; } if(Math.abs(conf-m_midPoints[start]) <= Math.abs(conf-m_midPoints[end])) return m_midPoints[start]; else return m_midPoints[end]; } /** * calculates the numerator and the denominator of the prior equation * @param weighted indicates whether the numerator or the denominator is calculated * @param mPoint the mid Point of an interval * @return the numerator or denominator of the prior equation */ public final double calculatePriorSum(boolean weighted, double mPoint){ double distr, sum =0, max = logbinomialCoefficient(m_instances.numAttributes(),(int)m_instances.numAttributes()/2); for(int i = 1; i <= m_instances.numAttributes(); i++){ if(weighted){ String key = (String.valueOf(mPoint)).concat(String.valueOf((double)i)); Double hashValue = (Double)m_distribution.get(key); if(hashValue !=null) distr = hashValue.doubleValue(); else distr = 0; //distr = 1.0/m_numIntervals; if(distr != 0){ double addend = Utils.log2(distr) - max + Utils.log2((Math.pow(2,i)-1)) + logbinomialCoefficient(m_instances.numAttributes(),i); sum = sum + Math.pow(2,addend); } } else{ double addend = Utils.log2((Math.pow(2,i)-1)) - max + logbinomialCoefficient(m_instances.numAttributes(),i); sum = sum + Math.pow(2,addend); } } return sum; } /** * Method that calculates the base 2 logarithm of a binomial coefficient * @param upperIndex upper Inedx of the binomial coefficient * @param lowerIndex lower index of the binomial coefficient * @return the base 2 logarithm of the binomial coefficient */ public static final double logbinomialCoefficient(int upperIndex, int lowerIndex){ double result =1.0; if(upperIndex == lowerIndex || lowerIndex == 0) return result; result = SpecialFunctions.log2Binomial((double)upperIndex, (double)lowerIndex); return result; } /** * Method to estimate the prior probabilities * @throws Exception throws exception if the prior cannot be calculated * @return a hashtable containing the prior probabilities */ public final Hashtable estimatePrior() throws Exception{ double distr, prior, denominator, mPoint; Hashtable m_priors = new Hashtable(m_numIntervals); denominator = calculatePriorSum(false,1.0); generateDistribution(); for(int i = 0; i < m_numIntervals; i++){ mPoint = m_midPoints[i]; prior = calculatePriorSum(true,mPoint) / denominator; m_priors.put(new Double(mPoint), new Double(prior)); } return m_priors; } /** * split the interval [0,1] into a predefined number of intervals and calculates their mid points */ public final void midPoints(){ m_midPoints = new double[m_numIntervals]; for(int i = 0; i < m_numIntervals; i++) m_midPoints[i] = midPoint(1.0/m_numIntervals, i); } /** * calculates the mid point of an interval * @param size the size of each interval * @param number the number of the interval. * The intervals are numbered from 0 to m_numIntervals. * @return the mid point of the interval */ public double midPoint(double size, int number){ return (size * (double)number) + (size / 2.0); } /** * returns an ordered array of all mid points * @return an ordered array of doubles conatining all midpoints */ public final double[] getMidPoints(){ return m_midPoints; } /** * splits an item set into premise and consequence and constructs therefore * an association rule. The length of the premise is given. The attributes * for premise and consequence are chosen randomly. The result is a RuleItem. * @param premiseLength the length of the premise * @param itemArray a (randomly generated) item set * @return a randomly generated association rule stored in a RuleItem */ public final RuleItem splitItemSet (int premiseLength, int[] itemArray){ int[] cons = new int[m_instances.numAttributes()]; System.arraycopy(itemArray, 0, cons, 0, itemArray.length); int help = premiseLength; while(help > 0){ int mark = m_randNum.nextInt(itemArray.length); if(cons[mark] != -1){ help--; cons[mark] =-1; } } if(premiseLength == 0) for(int i =0; i < itemArray.length;i++) itemArray[i] = -1; else for(int i =0; i < itemArray.length;i++) if(cons[i] != -1) itemArray[i] = -1; ItemSet premise = new ItemSet(itemArray); ItemSet consequence = new ItemSet(cons); RuleItem current = new RuleItem(); current.m_premise = premise; current.m_consequence = consequence; return current; } /** * generates a class association rule out of a given premise. * It randomly chooses a class label as consequence. * @param itemArray the (randomly constructed) premise of the class association rule * @return a class association rule stored in a RuleItem */ public final RuleItem addCons (int[] itemArray){ ItemSet premise = new ItemSet(itemArray); int[] cons = new int[itemArray.length]; for(int i =0;i < itemArray.length;i++) cons[i] = -1; cons[m_instances.classIndex()] = m_randNum.nextInt((m_instances.attribute(m_instances.classIndex())).numValues()); ItemSet consequence = new ItemSet(cons); RuleItem current = new RuleItem(); current.m_premise = premise; current.m_consequence = consequence; return current; } /** * updates the support count of an item set * @param itemSet the item set */ public final void updateCounters(ItemSet itemSet){ for (int i = 0; i < m_instances.numInstances(); i++) itemSet.upDateCounter(m_instances.instance(i)); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.7 $"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy