All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.attributeSelection.ChiSquaredAttributeEval Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    ChiSquaredAttributeEval.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import weka.core.Capabilities;
import weka.core.ContingencyTables;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.supervised.attribute.Discretize;
import weka.filters.unsupervised.attribute.NumericToBinary;

import java.util.Enumeration;
import java.util.Vector;

/** 
 
 * ChiSquaredAttributeEval :
*
* Evaluates the worth of an attribute by computing the value of the chi-squared statistic with respect to the class.
*

* * Valid options are:

* *

 -M
 *  treat missing values as a seperate value.
* *
 -B
 *  just binarize numeric attributes instead 
 *  of properly discretizing them.
* * * @author Eibe Frank ([email protected]) * @version $Revision: 5511 $ * @see Discretize * @see NumericToBinary */ public class ChiSquaredAttributeEval extends ASEvaluation implements AttributeEvaluator, OptionHandler { /** for serialization */ static final long serialVersionUID = -8316857822521717692L; /** Treat missing values as a seperate value */ private boolean m_missing_merge; /** Just binarize numeric attributes */ private boolean m_Binarize; /** The chi-squared value for each attribute */ private double[] m_ChiSquareds; /** * Returns a string describing this attribute evaluator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "ChiSquaredAttributeEval :\n\nEvaluates the worth of an attribute " +"by computing the value of the chi-squared statistic with respect to the class.\n"; } /** * Constructor */ public ChiSquaredAttributeEval () { resetOptions(); } /** * Returns an enumeration describing the available options * @return an enumeration of all the available options **/ public Enumeration listOptions () { Vector newVector = new Vector(2); newVector.addElement(new Option("\ttreat missing values as a seperate " + "value.", "M", 0, "-M")); newVector.addElement(new Option("\tjust binarize numeric attributes instead \n" +"\tof properly discretizing them.", "B", 0, "-B")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -M
   *  treat missing values as a seperate value.
* *
 -B
   *  just binarize numeric attributes instead 
   *  of properly discretizing them.
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { resetOptions(); setMissingMerge(!(Utils.getFlag('M', options))); setBinarizeNumericAttributes(Utils.getFlag('B', options)); } /** * Gets the current settings. * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] options = new String[2]; int current = 0; if (!getMissingMerge()) { options[current++] = "-M"; } if (getBinarizeNumericAttributes()) { options[current++] = "-B"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binarizeNumericAttributesTipText() { return "Just binarize numeric attributes instead of properly discretizing them."; } /** * Binarize numeric attributes. * * @param b true=binarize numeric attributes */ public void setBinarizeNumericAttributes (boolean b) { m_Binarize = b; } /** * get whether numeric attributes are just being binarized. * * @return true if missing values are being distributed. */ public boolean getBinarizeNumericAttributes () { return m_Binarize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String missingMergeTipText() { return "Distribute counts for missing values. Counts are distributed " +"across other values in proportion to their frequency. Otherwise, " +"missing is treated as a separate value."; } /** * distribute the counts for missing values across observed values * * @param b true=distribute missing values. */ public void setMissingMerge (boolean b) { m_missing_merge = b; } /** * get whether missing values are being distributed or not * * @return true if missing values are being distributed. */ public boolean getMissingMerge () { return m_missing_merge; } /** * Returns the capabilities of this evaluator. * * @return the capabilities of this evaluator * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Initializes a chi-squared attribute evaluator. * Discretizes all attributes that are numeric. * * @param data set of instances serving as training data * @throws Exception if the evaluator has not been * generated successfully */ public void buildEvaluator (Instances data) throws Exception { // can evaluator handle data? getCapabilities().testWithFail(data); int classIndex = data.classIndex(); int numInstances = data.numInstances(); if (!m_Binarize) { Discretize disTransform = new Discretize(); disTransform.setUseBetterEncoding(true); disTransform.setInputFormat(data); data = Filter.useFilter(data, disTransform); } else { NumericToBinary binTransform = new NumericToBinary(); binTransform.setInputFormat(data); data = Filter.useFilter(data, binTransform); } int numClasses = data.attribute(classIndex).numValues(); // Reserve space and initialize counters double[][][] counts = new double[data.numAttributes()][][]; for (int k = 0; k < data.numAttributes(); k++) { if (k != classIndex) { int numValues = data.attribute(k).numValues(); counts[k] = new double[numValues + 1][numClasses + 1]; } } // Initialize counters double[] temp = new double[numClasses + 1]; for (int k = 0; k < numInstances; k++) { Instance inst = data.instance(k); if (inst.classIsMissing()) { temp[numClasses] += inst.weight(); } else { temp[(int)inst.classValue()] += inst.weight(); } } for (int k = 0; k < counts.length; k++) { if (k != classIndex) { for (int i = 0; i < temp.length; i++) { counts[k][0][i] = temp[i]; } } } // Get counts for (int k = 0; k < numInstances; k++) { Instance inst = data.instance(k); for (int i = 0; i < inst.numValues(); i++) { if (inst.index(i) != classIndex) { if (inst.isMissingSparse(i) || inst.classIsMissing()) { if (!inst.isMissingSparse(i)) { counts[inst.index(i)][(int)inst.valueSparse(i)][numClasses] += inst.weight(); counts[inst.index(i)][0][numClasses] -= inst.weight(); } else if (!inst.classIsMissing()) { counts[inst.index(i)][data.attribute(inst.index(i)).numValues()] [(int)inst.classValue()] += inst.weight(); counts[inst.index(i)][0][(int)inst.classValue()] -= inst.weight(); } else { counts[inst.index(i)][data.attribute(inst.index(i)).numValues()] [numClasses] += inst.weight(); counts[inst.index(i)][0][numClasses] -= inst.weight(); } } else { counts[inst.index(i)][(int)inst.valueSparse(i)] [(int)inst.classValue()] += inst.weight(); counts[inst.index(i)][0][(int)inst.classValue()] -= inst.weight(); } } } } // distribute missing counts if required if (m_missing_merge) { for (int k = 0; k < data.numAttributes(); k++) { if (k != classIndex) { int numValues = data.attribute(k).numValues(); // Compute marginals double[] rowSums = new double[numValues]; double[] columnSums = new double[numClasses]; double sum = 0; for (int i = 0; i < numValues; i++) { for (int j = 0; j < numClasses; j++) { rowSums[i] += counts[k][i][j]; columnSums[j] += counts[k][i][j]; } sum += rowSums[i]; } if (Utils.gr(sum, 0)) { double[][] additions = new double[numValues][numClasses]; // Compute what needs to be added to each row for (int i = 0; i < numValues; i++) { for (int j = 0; j < numClasses; j++) { additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j]; } } // Compute what needs to be added to each column for (int i = 0; i < numClasses; i++) { for (int j = 0; j < numValues; j++) { additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses]; } } // Compute what needs to be added to each cell for (int i = 0; i < numClasses; i++) { for (int j = 0; j < numValues; j++) { additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses]; } } // Make new contingency table double[][] newTable = new double[numValues][numClasses]; for (int i = 0; i < numValues; i++) { for (int j = 0; j < numClasses; j++) { newTable[i][j] = counts[k][i][j] + additions[i][j]; } } counts[k] = newTable; } } } } // Compute chi-squared values m_ChiSquareds = new double[data.numAttributes()]; for (int i = 0; i < data.numAttributes(); i++) { if (i != classIndex) { m_ChiSquareds[i] = ContingencyTables. chiVal(ContingencyTables.reduceMatrix(counts[i]), false); } } } /** * Reset options to their default values */ protected void resetOptions () { m_ChiSquareds = null; m_missing_merge = true; m_Binarize = false; } /** * evaluates an individual attribute by measuring its * chi-squared value. * * @param attribute the index of the attribute to be evaluated * @return the chi-squared value * @throws Exception if the attribute could not be evaluated */ public double evaluateAttribute (int attribute) throws Exception { return m_ChiSquareds[attribute]; } /** * Describe the attribute evaluator * @return a description of the attribute evaluator as a string */ public String toString () { StringBuffer text = new StringBuffer(); if (m_ChiSquareds == null) { text.append("Chi-squared attribute evaluator has not been built"); } else { text.append("\tChi-squared Ranking Filter"); if (!m_missing_merge) { text.append("\n\tMissing values treated as seperate"); } if (m_Binarize) { text.append("\n\tNumeric attributes are just binarized"); } } text.append("\n"); return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5511 $"); } /** * Main method. * * @param args the options */ public static void main (String[] args) { runEvaluator(new ChiSquaredAttributeEval(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy