All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.CheckClassifier Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    CheckClassifier.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers;

import weka.core.Attribute;
import weka.core.CheckScheme;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SerializationHelper;
import weka.core.TestInstances;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 * Class for examining the capabilities and finding problems with 
 * classifiers. If you implement a classifier using the WEKA.libraries,
 * you should run the checks on it to ensure robustness and correct
 * operation. Passing all the tests of this object does not mean
 * bugs in the classifier don't exist, but this will help find some
 * common ones. 

* * Typical usage:

* java weka.classifiers.CheckClassifier -W classifier_name * classifier_options

* * CheckClassifier reports on the following: *

    *
  • Classifier abilities *
      *
    • Possible command line options to the classifier
    • *
    • Whether the classifier can predict nominal, numeric, string, * date or relational class attributes. Warnings will be displayed if * performance is worse than ZeroR
    • *
    • Whether the classifier can be trained incrementally
    • *
    • Whether the classifier can handle numeric predictor attributes
    • *
    • Whether the classifier can handle nominal predictor attributes
    • *
    • Whether the classifier can handle string predictor attributes
    • *
    • Whether the classifier can handle date predictor attributes
    • *
    • Whether the classifier can handle relational predictor attributes
    • *
    • Whether the classifier can handle multi-instance data
    • *
    • Whether the classifier can handle missing predictor values
    • *
    • Whether the classifier can handle missing class values
    • *
    • Whether a nominal classifier only handles 2 class problems
    • *
    • Whether the classifier can handle instance weights
    • *
    *
  • *
  • Correct functioning *
      *
    • Correct initialisation during buildClassifier (i.e. no result * changes when buildClassifier called repeatedly)
    • *
    • Whether incremental training produces the same results * as during non-incremental training (which may or may not * be OK)
    • *
    • Whether the classifier alters the data pased to it * (number of instances, instance order, instance weights, etc)
    • *
    • Whether the toString() method works correctly before the * classifier has been built.
    • *
    *
  • *
  • Degenerate cases *
      *
    • building classifier with zero training instances
    • *
    • all but one predictor attribute values missing
    • *
    • all predictor attribute values missing
    • *
    • all but one class values missing
    • *
    • all class values missing
    • *
    *
  • *
* Running CheckClassifier with the debug option set will output the * training and test datasets for any failed tests.

* * The weka.classifiers.AbstractClassifierTest uses this * class to test all the classifiers. Any changes here, have to be * checked in that abstract test class, too.

* * Valid options are:

* *

 -D
 *  Turn on debugging output.
* *
 -S
 *  Silent mode - prints nothing to stdout.
* *
 -N <num>
 *  The number of instances in the datasets (default 20).
* *
 -nominal <num>
 *  The number of nominal attributes (default 2).
* *
 -nominal-values <num>
 *  The number of values for nominal attributes (default 1).
* *
 -numeric <num>
 *  The number of numeric attributes (default 1).
* *
 -string <num>
 *  The number of string attributes (default 1).
* *
 -date <num>
 *  The number of date attributes (default 1).
* *
 -relational <num>
 *  The number of relational attributes (default 1).
* *
 -num-instances-relational <num>
 *  The number of instances in relational/bag attributes (default 10).
* *
 -words <comma-separated-list>
 *  The words to use in string attributes.
* *
 -word-separators <chars>
 *  The word separators to use in string attributes.
* *
 -W
 *  Full name of the classifier analysed.
 *  eg: weka.classifiers.bayes.NaiveBayes
 *  (default weka.classifiers.rules.ZeroR)
* *
 
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * Options after -- are passed to the designated classifier.

* * @author Len Trigg ([email protected]) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 1.33 $ * @see TestInstances */ public class CheckClassifier extends CheckScheme { /* * Note about test methods: * - methods return array of booleans * - first index: success or not * - second index: acceptable or not (e.g., Exception is OK) * - in case the performance is worse than that of ZeroR both indices are true * * FracPete (fracpete at waikato dot ac dot nz) */ /*** The classifier to be examined */ protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result = new Vector(); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); result.addElement(new Option( "\tFull name of the classifier analysed.\n" +"\teg: weka.classifiers.bayes.NaiveBayes\n" + "\t(default weka.classifiers.rules.ZeroR)", "W", 1, "-W")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { result.addElement(new Option("", "", 0, "\nOptions specific to classifier " + m_Classifier.getClass().getName() + ":")); Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); while (enu.hasMoreElements()) result.addElement(enu.nextElement()); } return result.elements(); } /** * Parses a given list of options. * * Valid options are:

* *

 -D
   *  Turn on debugging output.
* *
 -S
   *  Silent mode - prints nothing to stdout.
* *
 -N <num>
   *  The number of instances in the datasets (default 20).
* *
 -nominal <num>
   *  The number of nominal attributes (default 2).
* *
 -nominal-values <num>
   *  The number of values for nominal attributes (default 1).
* *
 -numeric <num>
   *  The number of numeric attributes (default 1).
* *
 -string <num>
   *  The number of string attributes (default 1).
* *
 -date <num>
   *  The number of date attributes (default 1).
* *
 -relational <num>
   *  The number of relational attributes (default 1).
* *
 -num-instances-relational <num>
   *  The number of instances in relational/bag attributes (default 10).
* *
 -words <comma-separated-list>
   *  The words to use in string attributes.
* *
 -word-separators <chars>
   *  The word separators to use in string attributes.
* *
 -W
   *  Full name of the classifier analysed.
   *  eg: weka.classifiers.bayes.NaiveBayes
   *  (default weka.classifiers.rules.ZeroR)
* *
 
   * Options specific to classifier weka.classifiers.rules.ZeroR:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('W', options); if (tmpStr.length() == 0) tmpStr = weka.classifiers.rules.ZeroR.class.getName(); setClassifier( (Classifier) forName( "weka.classifiers", Classifier.class, tmpStr, Utils.partitionOptions(options))); } /** * Gets the current settings of the CheckClassifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); if (getClassifier() != null) { result.add("-W"); result.add(getClassifier().getClass().getName()); } if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) options = ((OptionHandler) m_Classifier).getOptions(); else options = new String[0]; if (options.length > 0) { result.add("--"); for (i = 0; i < options.length; i++) result.add(options[i]); } return (String[]) result.toArray(new String[result.size()]); } /** * Begin the tests, reporting results to System.out */ public void doTests() { if (getClassifier() == null) { println("\n=== No classifier set ==="); return; } println("\n=== Check on Classifier: " + getClassifier().getClass().getName() + " ===\n"); // Start tests m_ClasspathProblems = false; println("--> Checking for interfaces"); canTakeOptions(); boolean updateableClassifier = updateableClassifier()[0]; boolean weightedInstancesHandler = weightedInstancesHandler()[0]; boolean multiInstanceHandler = multiInstanceHandler()[0]; println("--> Classifier tests"); declaresSerialVersionUID(); testToString(); testsPerClassType(Attribute.NOMINAL, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); testsPerClassType(Attribute.NUMERIC, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); testsPerClassType(Attribute.DATE, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); testsPerClassType(Attribute.STRING, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); testsPerClassType(Attribute.RELATIONAL, updateableClassifier, weightedInstancesHandler, multiInstanceHandler); } /** * Set the classifier for boosting. * * @param newClassifier the Classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Classifier = newClassifier; } /** * Get the classifier used as the classifier * * @return the classifier used as the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Run a battery of tests for a given class attribute type * * @param classType true if the class attribute should be numeric * @param updateable true if the classifier is updateable * @param weighted true if the classifier says it handles weights * @param multiInstance true if the classifier is a multi-instance classifier */ protected void testsPerClassType(int classType, boolean updateable, boolean weighted, boolean multiInstance) { boolean PNom = canPredict(true, false, false, false, false, multiInstance, classType)[0]; boolean PNum = canPredict(false, true, false, false, false, multiInstance, classType)[0]; boolean PStr = canPredict(false, false, true, false, false, multiInstance, classType)[0]; boolean PDat = canPredict(false, false, false, true, false, multiInstance, classType)[0]; boolean PRel; if (!multiInstance) PRel = canPredict(false, false, false, false, true, multiInstance, classType)[0]; else PRel = false; if (PNom || PNum || PStr || PDat || PRel) { if (weighted) instanceWeights(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); canHandleOnlyClass(PNom, PNum, PStr, PDat, PRel, classType); if (classType == Attribute.NOMINAL) canHandleNClasses(PNom, PNum, PStr, PDat, PRel, multiInstance, 4); if (!multiInstance) { canHandleClassAsNthAttribute(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, 0); canHandleClassAsNthAttribute(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, 1); } canHandleZeroTraining(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); boolean handleMissingPredictors = canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, true, false, 20)[0]; if (handleMissingPredictors) canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, true, false, 100); boolean handleMissingClass = canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, false, true, 20)[0]; if (handleMissingClass) canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, false, true, 100); correctBuildInitialisation(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); datasetIntegrity(PNom, PNum, PStr, PDat, PRel, multiInstance, classType, handleMissingPredictors, handleMissingClass); doesntUseTestClassVal(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); if (updateable) updatingEquality(PNom, PNum, PStr, PDat, PRel, multiInstance, classType); } } /** * Checks whether the scheme's toString() method works even though the * classifies hasn't been built yet. * * @return index 0 is true if the toString() method works fine */ protected boolean[] testToString() { boolean[] result = new boolean[2]; print("toString..."); try { Classifier copy = (Classifier) m_Classifier.getClass().newInstance(); copy.toString(); result[0] = true; println("yes"); } catch (Exception e) { result[0] = false; println("no"); if (m_Debug) { println("\n=== Full report ==="); e.printStackTrace(); println("\n"); } } return result; } /** * tests for a serialVersionUID. Fails in case the scheme doesn't declare * a UID. * * @return index 0 is true if the scheme declares a UID */ protected boolean[] declaresSerialVersionUID() { boolean[] result = new boolean[2]; print("serialVersionUID..."); result[0] = !SerializationHelper.needsUID(m_Classifier.getClass()); if (result[0]) println("yes"); else println("no"); return result; } /** * Checks whether the scheme can take command line options. * * @return index 0 is true if the classifier can take options */ protected boolean[] canTakeOptions() { boolean[] result = new boolean[2]; print("options..."); if (m_Classifier instanceof OptionHandler) { println("yes"); if (m_Debug) { println("\n=== Full report ==="); Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); while (enu.hasMoreElements()) { Option option = (Option) enu.nextElement(); print(option.synopsis() + "\n" + option.description() + "\n"); } println("\n"); } result[0] = true; } else { println("no"); result[0] = false; } return result; } /** * Checks whether the scheme can build models incrementally. * * @return index 0 is true if the classifier can train incrementally */ protected boolean[] updateableClassifier() { boolean[] result = new boolean[2]; print("updateable classifier..."); if (m_Classifier instanceof UpdateableClassifier) { println("yes"); result[0] = true; } else { println("no"); result[0] = false; } return result; } /** * Checks whether the scheme says it can handle instance weights. * * @return true if the classifier handles instance weights */ protected boolean[] weightedInstancesHandler() { boolean[] result = new boolean[2]; print("weighted instances classifier..."); if (m_Classifier instanceof WeightedInstancesHandler) { println("yes"); result[0] = true; } else { println("no"); result[0] = false; } return result; } /** * Checks whether the scheme handles multi-instance data. * * @return true if the classifier handles multi-instance data */ protected boolean[] multiInstanceHandler() { boolean[] result = new boolean[2]; print("multi-instance classifier..."); if (m_Classifier instanceof MultiInstanceCapabilitiesHandler) { println("yes"); result[0] = true; } else { println("no"); result[0] = false; } return result; } /** * Checks basic prediction of the scheme, for simple non-troublesome * datasets. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NOMINAL, NUMERIC, etc.) * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] canPredict( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { print("basic predict"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); FastVector accepts = new FastVector(); accepts.addElement("unary"); accepts.addElement("binary"); accepts.addElement("nominal"); accepts.addElement("numeric"); accepts.addElement("string"); accepts.addElement("date"); accepts.addElement("relational"); accepts.addElement("multi-instance"); accepts.addElement("not in classpath"); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme can handle data that contains only the class * attribute. If a scheme cannot build a proper model with that data, it * should default back to a ZeroR model. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param classType the class type (NOMINAL, NUMERIC, etc.) * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] canHandleOnlyClass( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, int classType) { print("only class in data"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, false, classType); print("..."); FastVector accepts = new FastVector(); accepts.addElement("class"); accepts.addElement("zeror"); int numTrain = getNumInstances(), numTest = getNumInstances(), missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest(false, false, false, false, false, false, classType, missingLevel, predictorMissing, classMissing, numTrain, numTest, 2, accepts); } /** * Checks whether nominal schemes can handle more than two classes. * If a scheme is only designed for two-class problems it should * throw an appropriate exception for multi-class problems. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param numClasses the number of classes to test * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] canHandleNClasses( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int numClasses) { print("more than two class problems"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, Attribute.NOMINAL); print("..."); FastVector accepts = new FastVector(); accepts.addElement("number"); accepts.addElement("class"); int numTrain = getNumInstances(), numTest = getNumInstances(), missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, Attribute.NOMINAL, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme can handle class attributes as Nth attribute. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param classIndex the index of the class attribute (0-based, -1 means last attribute) * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable * @see TestInstances#CLASS_IS_LAST */ protected boolean[] canHandleClassAsNthAttribute( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType, int classIndex) { if (classIndex == TestInstances.CLASS_IS_LAST) print("class attribute as last attribute"); else print("class attribute as " + (classIndex + 1) + ". attribute"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); FastVector accepts = new FastVector(); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType, classIndex, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme can handle zero training instances. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] canHandleZeroTraining( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { print("handle zero training instances"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); FastVector accepts = new FastVector(); accepts.addElement("train"); accepts.addElement("value"); int numTrain = 0, numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; return runBasicTest( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether the scheme correctly initialises models when * buildClassifier is called. This test calls buildClassifier with * one training dataset and records performance on a test set. * buildClassifier is then called on a training set with different * structure, and then again with the original training set. The * performance on the test set is compared with the original results * and any performance difference noted as incorrect build initialisation. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed, index 1 is true if the * scheme performs worse than ZeroR, but without error (index 0 is * false) */ protected boolean[] correctBuildInitialisation( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { boolean[] result = new boolean[2]; print("correct initialisation during buildClassifier"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; Instances train1 = null; Instances test1 = null; Instances train2 = null; Instances test2 = null; Classifier classifier = null; Evaluation evaluation1A = null; Evaluation evaluation1B = null; Evaluation evaluation2 = null; boolean built = false; int stage = 0; try { // Make two sets of train/test splits with different // numbers of attributes train1 = makeTestDataset(42, numTrain, nominalPredictor ? getNumNominal() : 0, numericPredictor ? getNumNumeric() : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); train2 = makeTestDataset(84, numTrain, nominalPredictor ? getNumNominal() + 1 : 0, numericPredictor ? getNumNumeric() + 1 : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); test1 = makeTestDataset(24, numTest, nominalPredictor ? getNumNominal() : 0, numericPredictor ? getNumNumeric() : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); test2 = makeTestDataset(48, numTest, nominalPredictor ? getNumNominal() + 1 : 0, numericPredictor ? getNumNumeric() + 1 : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); if (missingLevel > 0) { addMissing(train1, missingLevel, predictorMissing, classMissing); addMissing(test1, Math.min(missingLevel,50), predictorMissing, classMissing); addMissing(train2, missingLevel, predictorMissing, classMissing); addMissing(test2, Math.min(missingLevel,50), predictorMissing, classMissing); } classifier = Classifier.makeCopies(getClassifier(), 1)[0]; evaluation1A = new Evaluation(train1); evaluation1B = new Evaluation(train1); evaluation2 = new Evaluation(train2); } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { stage = 0; classifier.buildClassifier(train1); built = true; if (!testWRTZeroR(classifier, evaluation1A, train1, test1)[0]) { throw new Exception("Scheme performs worse than ZeroR"); } stage = 1; built = false; classifier.buildClassifier(train2); built = true; if (!testWRTZeroR(classifier, evaluation2, train2, test2)[0]) { throw new Exception("Scheme performs worse than ZeroR"); } stage = 2; built = false; classifier.buildClassifier(train1); built = true; if (!testWRTZeroR(classifier, evaluation1B, train1, test1)[0]) { throw new Exception("Scheme performs worse than ZeroR"); } stage = 3; if (!evaluation1A.equals(evaluation1B)) { if (m_Debug) { println("\n=== Full report ===\n" + evaluation1A.toSummaryString("\nFirst buildClassifier()", true) + "\n\n"); println( evaluation1B.toSummaryString("\nSecond buildClassifier()", true) + "\n\n"); } throw new Exception("Results differ between buildClassifier calls"); } println("yes"); result[0] = true; if (false && m_Debug) { println("\n=== Full report ===\n" + evaluation1A.toSummaryString("\nFirst buildClassifier()", true) + "\n\n"); println( evaluation1B.toSummaryString("\nSecond buildClassifier()", true) + "\n\n"); } } catch (Exception ex) { String msg = ex.getMessage().toLowerCase(); if (msg.indexOf("worse than zeror") >= 0) { println("warning: performs worse than ZeroR"); result[0] = (stage < 1); result[1] = (stage < 1); } else { println("no"); result[0] = false; } if (m_Debug) { println("\n=== Full Report ==="); print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } switch (stage) { case 0: print(" of dataset 1"); break; case 1: print(" of dataset 2"); break; case 2: print(" of dataset 1 (2nd build)"); break; case 3: print(", comparing results from builds of dataset 1"); break; } println(": " + ex.getMessage() + "\n"); println("here are the datasets:\n"); println("=== Train1 Dataset ===\n" + train1.toString() + "\n"); println("=== Test1 Dataset ===\n" + test1.toString() + "\n\n"); println("=== Train2 Dataset ===\n" + train2.toString() + "\n"); println("=== Test2 Dataset ===\n" + test2.toString() + "\n\n"); } } return result; } /** * Checks basic missing value handling of the scheme. If the missing * values cause an exception to be thrown by the scheme, this will be * recorded. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param predictorMissing true if the missing values may be in * the predictors * @param classMissing true if the missing values may be in the class * @param missingLevel the percentage of missing values * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] canHandleMissing( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType, boolean predictorMissing, boolean classMissing, int missingLevel) { if (missingLevel == 100) print("100% "); print("missing"); if (predictorMissing) { print(" predictor"); if (classMissing) print(" and"); } if (classMissing) print(" class"); print(" values"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); FastVector accepts = new FastVector(); accepts.addElement("missing"); accepts.addElement("value"); accepts.addElement("train"); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2; return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Checks whether an updateable scheme produces the same model when * trained incrementally as when batch trained. The model itself * cannot be compared, so we compare the evaluation on test data * for both models. It is possible to get a false positive on this * test (likelihood depends on the classifier). * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed */ protected boolean[] updatingEquality( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { print("incremental training produces the same results" + " as batch training"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; boolean[] result = new boolean[2]; Instances train = null; Instances test = null; Classifier [] classifiers = null; Evaluation evaluationB = null; Evaluation evaluationI = null; boolean built = false; try { train = makeTestDataset(42, numTrain, nominalPredictor ? getNumNominal() : 0, numericPredictor ? getNumNumeric() : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); test = makeTestDataset(24, numTest, nominalPredictor ? getNumNominal() : 0, numericPredictor ? getNumNumeric() : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); if (missingLevel > 0) { addMissing(train, missingLevel, predictorMissing, classMissing); addMissing(test, Math.min(missingLevel, 50), predictorMissing, classMissing); } classifiers = Classifier.makeCopies(getClassifier(), 2); evaluationB = new Evaluation(train); evaluationI = new Evaluation(train); classifiers[0].buildClassifier(train); testWRTZeroR(classifiers[0], evaluationB, train, test); } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { classifiers[1].buildClassifier(new Instances(train, 0)); for (int i = 0; i < train.numInstances(); i++) { ((UpdateableClassifier)classifiers[1]).updateClassifier( train.instance(i)); } built = true; testWRTZeroR(classifiers[1], evaluationI, train, test); if (!evaluationB.equals(evaluationI)) { println("no"); result[0] = false; if (m_Debug) { println("\n=== Full Report ==="); println("Results differ between batch and " + "incrementally built models.\n" + "Depending on the classifier, this may be OK"); println("Here are the results:\n"); println(evaluationB.toSummaryString( "\nbatch built results\n", true)); println(evaluationI.toSummaryString( "\nincrementally built results\n", true)); println("Here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Test Dataset ===\n" + test.toString() + "\n\n"); } } else { println("yes"); result[0] = true; } } catch (Exception ex) { result[0] = false; print("Problem during"); if (built) print(" testing"); else print(" training"); println(": " + ex.getMessage() + "\n"); } return result; } /** * Checks whether the classifier erroneously uses the class * value of test instances (if provided). Runs the classifier with * test instance class values set to missing and compares with results * when test instance class values are left intact. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 is true if the test was passed */ protected boolean[] doesntUseTestClassVal( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { print("classifier ignores test instance class vals"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); int numTrain = 2*getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; boolean[] result = new boolean[2]; Instances train = null; Instances test = null; Classifier [] classifiers = null; boolean evalFail = false; try { train = makeTestDataset(42, numTrain, nominalPredictor ? getNumNominal() + 1 : 0, numericPredictor ? getNumNumeric() + 1 : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); test = makeTestDataset(24, numTest, nominalPredictor ? getNumNominal() + 1 : 0, numericPredictor ? getNumNumeric() + 1 : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); if (missingLevel > 0) { addMissing(train, missingLevel, predictorMissing, classMissing); addMissing(test, Math.min(missingLevel, 50), predictorMissing, classMissing); } classifiers = Classifier.makeCopies(getClassifier(), 2); classifiers[0].buildClassifier(train); classifiers[1].buildClassifier(train); } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { // Now set test values to missing when predicting for (int i = 0; i < test.numInstances(); i++) { Instance testInst = test.instance(i); Instance classMissingInst = (Instance)testInst.copy(); classMissingInst.setDataset(test); classMissingInst.setClassMissing(); double [] dist0 = classifiers[0].distributionForInstance(testInst); double [] dist1 = classifiers[1].distributionForInstance(classMissingInst); for (int j = 0; j < dist0.length; j++) { // ignore, if both are NaNs if (Double.isNaN(dist0[j]) && Double.isNaN(dist1[j])) { if (getDebug()) System.out.println("Both predictions are NaN!"); continue; } // distribution different? if (dist0[j] != dist1[j]) { throw new Exception("Prediction different for instance " + (i + 1)); } } } println("yes"); result[0] = true; } catch (Exception ex) { println("no"); result[0] = false; if (m_Debug) { println("\n=== Full Report ==="); if (evalFail) { println("Results differ between non-missing and " + "missing test class values."); } else { print("Problem during testing"); println(": " + ex.getMessage() + "\n"); } println("Here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Train Weights ===\n"); for (int i = 0; i < train.numInstances(); i++) { println(" " + (i + 1) + " " + train.instance(i).weight()); } println("=== Test Dataset ===\n" + test.toString() + "\n\n"); println("(test weights all 1.0\n"); } } return result; } /** * Checks whether the classifier can handle instance weights. * This test compares the classifier performance on two datasets * that are identical except for the training weights. If the * results change, then the classifier must be using the weights. It * may be possible to get a false positive from this test if the * weight changes aren't significant enough to induce a change * in classifier performance (but the weights are chosen to minimize * the likelihood of this). * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @return index 0 true if the test was passed */ protected boolean[] instanceWeights( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { print("classifier uses instance weights"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); int numTrain = 2*getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 0; boolean predictorMissing = false, classMissing = false; boolean[] result = new boolean[2]; Instances train = null; Instances test = null; Classifier [] classifiers = null; Evaluation evaluationB = null; Evaluation evaluationI = null; boolean built = false; boolean evalFail = false; try { train = makeTestDataset(42, numTrain, nominalPredictor ? getNumNominal() + 1 : 0, numericPredictor ? getNumNumeric() + 1 : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); test = makeTestDataset(24, numTest, nominalPredictor ? getNumNominal() + 1 : 0, numericPredictor ? getNumNumeric() + 1 : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); if (missingLevel > 0) { addMissing(train, missingLevel, predictorMissing, classMissing); addMissing(test, Math.min(missingLevel, 50), predictorMissing, classMissing); } classifiers = Classifier.makeCopies(getClassifier(), 2); evaluationB = new Evaluation(train); evaluationI = new Evaluation(train); classifiers[0].buildClassifier(train); testWRTZeroR(classifiers[0], evaluationB, train, test); } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { // Now modify instance weights and re-built/test for (int i = 0; i < train.numInstances(); i++) { train.instance(i).setWeight(0); } Random random = new Random(1); for (int i = 0; i < train.numInstances() / 2; i++) { int inst = Math.abs(random.nextInt()) % train.numInstances(); int weight = Math.abs(random.nextInt()) % 10 + 1; train.instance(inst).setWeight(weight); } classifiers[1].buildClassifier(train); built = true; testWRTZeroR(classifiers[1], evaluationI, train, test); if (evaluationB.equals(evaluationI)) { // println("no"); evalFail = true; throw new Exception("evalFail"); } println("yes"); result[0] = true; } catch (Exception ex) { println("no"); result[0] = false; if (m_Debug) { println("\n=== Full Report ==="); if (evalFail) { println("Results don't differ between non-weighted and " + "weighted instance models."); println("Here are the results:\n"); println(evaluationB.toSummaryString("\nboth methods\n", true)); } else { print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } println(": " + ex.getMessage() + "\n"); } println("Here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Train Weights ===\n"); for (int i = 0; i < train.numInstances(); i++) { println(" " + (i + 1) + " " + train.instance(i).weight()); } println("=== Test Dataset ===\n" + test.toString() + "\n\n"); println("(test weights all 1.0\n"); } } return result; } /** * Checks whether the scheme alters the training dataset during * training. If the scheme needs to modify the training * data it should take a copy of the training data. Currently checks * for changes to header structure, number of instances, order of * instances, instance weights. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param predictorMissing true if we know the classifier can handle * (at least) moderate missing predictor values * @param classMissing true if we know the classifier can handle * (at least) moderate missing class values * @return index 0 is true if the test was passed */ protected boolean[] datasetIntegrity( boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType, boolean predictorMissing, boolean classMissing) { print("classifier doesn't alter original datasets"); printAttributeSummary( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType); print("..."); int numTrain = getNumInstances(), numTest = getNumInstances(), numClasses = 2, missingLevel = 20; boolean[] result = new boolean[2]; Instances train = null; Instances test = null; Classifier classifier = null; Evaluation evaluation = null; boolean built = false; try { train = makeTestDataset(42, numTrain, nominalPredictor ? getNumNominal() : 0, numericPredictor ? getNumNumeric() : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); test = makeTestDataset(24, numTest, nominalPredictor ? getNumNominal() : 0, numericPredictor ? getNumNumeric() : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, multiInstance); if (missingLevel > 0) { addMissing(train, missingLevel, predictorMissing, classMissing); addMissing(test, Math.min(missingLevel, 50), predictorMissing, classMissing); } classifier = Classifier.makeCopies(getClassifier(), 1)[0]; evaluation = new Evaluation(train); } catch (Exception ex) { throw new Error("Error setting up for tests: " + ex.getMessage()); } try { Instances trainCopy = new Instances(train); Instances testCopy = new Instances(test); classifier.buildClassifier(trainCopy); compareDatasets(train, trainCopy); built = true; testWRTZeroR(classifier, evaluation, trainCopy, testCopy); compareDatasets(test, testCopy); println("yes"); result[0] = true; } catch (Exception ex) { println("no"); result[0] = false; if (m_Debug) { println("\n=== Full Report ==="); print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } println(": " + ex.getMessage() + "\n"); println("Here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Test Dataset ===\n" + test.toString() + "\n\n"); } } return result; } /** * Runs a text on the datasets with the given characteristics. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param missingLevel the percentage of missing values * @param predictorMissing true if the missing values may be in * the predictors * @param classMissing true if the missing values may be in the class * @param numTrain the number of instances in the training set * @param numTest the number of instaces in the test set * @param numClasses the number of classes * @param accepts the acceptable string in an exception * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] runBasicTest(boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType, int missingLevel, boolean predictorMissing, boolean classMissing, int numTrain, int numTest, int numClasses, FastVector accepts) { return runBasicTest( nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance, classType, TestInstances.CLASS_IS_LAST, missingLevel, predictorMissing, classMissing, numTrain, numTest, numClasses, accepts); } /** * Runs a text on the datasets with the given characteristics. * * @param nominalPredictor if true use nominal predictor attributes * @param numericPredictor if true use numeric predictor attributes * @param stringPredictor if true use string predictor attributes * @param datePredictor if true use date predictor attributes * @param relationalPredictor if true use relational predictor attributes * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param classIndex the attribute index of the class * @param missingLevel the percentage of missing values * @param predictorMissing true if the missing values may be in * the predictors * @param classMissing true if the missing values may be in the class * @param numTrain the number of instances in the training set * @param numTest the number of instaces in the test set * @param numClasses the number of classes * @param accepts the acceptable string in an exception * @return index 0 is true if the test was passed, index 1 is true if test * was acceptable */ protected boolean[] runBasicTest(boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType, int classIndex, int missingLevel, boolean predictorMissing, boolean classMissing, int numTrain, int numTest, int numClasses, FastVector accepts) { boolean[] result = new boolean[2]; Instances train = null; Instances test = null; Classifier classifier = null; Evaluation evaluation = null; boolean built = false; try { train = makeTestDataset(42, numTrain, nominalPredictor ? getNumNominal() : 0, numericPredictor ? getNumNumeric() : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, classIndex, multiInstance); test = makeTestDataset(24, numTest, nominalPredictor ? getNumNominal() : 0, numericPredictor ? getNumNumeric() : 0, stringPredictor ? getNumString() : 0, datePredictor ? getNumDate() : 0, relationalPredictor ? getNumRelational() : 0, numClasses, classType, classIndex, multiInstance); if (missingLevel > 0) { addMissing(train, missingLevel, predictorMissing, classMissing); addMissing(test, Math.min(missingLevel, 50), predictorMissing, classMissing); } classifier = Classifier.makeCopies(getClassifier(), 1)[0]; evaluation = new Evaluation(train); } catch (Exception ex) { ex.printStackTrace(); throw new Error("Error setting up for tests: " + ex.getMessage()); } try { classifier.buildClassifier(train); built = true; if (!testWRTZeroR(classifier, evaluation, train, test)[0]) { result[0] = true; result[1] = true; throw new Exception("Scheme performs worse than ZeroR"); } println("yes"); result[0] = true; } catch (Exception ex) { boolean acceptable = false; String msg; if (ex.getMessage() == null) msg = ""; else msg = ex.getMessage().toLowerCase(); if (msg.indexOf("not in classpath") > -1) m_ClasspathProblems = true; if (msg.indexOf("worse than zeror") >= 0) { println("warning: performs worse than ZeroR"); result[0] = true; result[1] = true; } else { for (int i = 0; i < accepts.size(); i++) { if (msg.indexOf((String)accepts.elementAt(i)) >= 0) { acceptable = true; } } println("no" + (acceptable ? " (OK error message)" : "")); result[1] = acceptable; } if (m_Debug) { println("\n=== Full Report ==="); print("Problem during"); if (built) { print(" testing"); } else { print(" training"); } println(": " + ex.getMessage() + "\n"); if (!acceptable) { if (accepts.size() > 0) { print("Error message doesn't mention "); for (int i = 0; i < accepts.size(); i++) { if (i != 0) { print(" or "); } print('"' + (String)accepts.elementAt(i) + '"'); } } println("here are the datasets:\n"); println("=== Train Dataset ===\n" + train.toString() + "\n"); println("=== Test Dataset ===\n" + test.toString() + "\n\n"); } } } return result; } /** * Determine whether the scheme performs worse than ZeroR during testing * * @param classifier the pre-trained classifier * @param evaluation the classifier evaluation object * @param train the training data * @param test the test data * @return index 0 is true if the scheme performs better than ZeroR * @throws Exception if there was a problem during the scheme's testing */ protected boolean[] testWRTZeroR(Classifier classifier, Evaluation evaluation, Instances train, Instances test) throws Exception { boolean[] result = new boolean[2]; evaluation.evaluateModel(classifier, test); try { // Tested OK, compare with ZeroR Classifier zeroR = new weka.classifiers.rules.ZeroR(); zeroR.buildClassifier(train); Evaluation zeroREval = new Evaluation(train); zeroREval.evaluateModel(zeroR, test); result[0] = Utils.grOrEq(zeroREval.errorRate(), evaluation.errorRate()); } catch (Exception ex) { throw new Error("Problem determining ZeroR performance: " + ex.getMessage()); } return result; } /** * Make a simple set of instances, which can later be modified * for use in specific tests. * * @param seed the random number seed * @param numInstances the number of instances to generate * @param numNominal the number of nominal attributes * @param numNumeric the number of numeric attributes * @param numString the number of string attributes * @param numDate the number of date attributes * @param numRelational the number of relational attributes * @param numClasses the number of classes (if nominal class) * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param multiInstance whether the dataset should a multi-instance dataset * @return the test dataset * @throws Exception if the dataset couldn't be generated * @see #process(Instances) */ protected Instances makeTestDataset(int seed, int numInstances, int numNominal, int numNumeric, int numString, int numDate, int numRelational, int numClasses, int classType, boolean multiInstance) throws Exception { return makeTestDataset( seed, numInstances, numNominal, numNumeric, numString, numDate, numRelational, numClasses, classType, TestInstances.CLASS_IS_LAST, multiInstance); } /** * Make a simple set of instances with variable position of the class * attribute, which can later be modified for use in specific tests. * * @param seed the random number seed * @param numInstances the number of instances to generate * @param numNominal the number of nominal attributes * @param numNumeric the number of numeric attributes * @param numString the number of string attributes * @param numDate the number of date attributes * @param numRelational the number of relational attributes * @param numClasses the number of classes (if nominal class) * @param classType the class type (NUMERIC, NOMINAL, etc.) * @param classIndex the index of the class (0-based, -1 as last) * @param multiInstance whether the dataset should a multi-instance dataset * @return the test dataset * @throws Exception if the dataset couldn't be generated * @see TestInstances#CLASS_IS_LAST * @see #process(Instances) */ protected Instances makeTestDataset(int seed, int numInstances, int numNominal, int numNumeric, int numString, int numDate, int numRelational, int numClasses, int classType, int classIndex, boolean multiInstance) throws Exception { TestInstances dataset = new TestInstances(); dataset.setSeed(seed); dataset.setNumInstances(numInstances); dataset.setNumNominal(numNominal); dataset.setNumNumeric(numNumeric); dataset.setNumString(numString); dataset.setNumDate(numDate); dataset.setNumRelational(numRelational); dataset.setNumClasses(numClasses); dataset.setClassType(classType); dataset.setClassIndex(classIndex); dataset.setNumClasses(numClasses); dataset.setMultiInstance(multiInstance); dataset.setWords(getWords()); dataset.setWordSeparators(getWordSeparators()); return process(dataset.generate()); } /** * Print out a short summary string for the dataset characteristics * * @param nominalPredictor true if nominal predictor attributes are present * @param numericPredictor true if numeric predictor attributes are present * @param stringPredictor true if string predictor attributes are present * @param datePredictor true if date predictor attributes are present * @param relationalPredictor true if relational predictor attributes are present * @param multiInstance whether multi-instance is needed * @param classType the class type (NUMERIC, NOMINAL, etc.) */ protected void printAttributeSummary(boolean nominalPredictor, boolean numericPredictor, boolean stringPredictor, boolean datePredictor, boolean relationalPredictor, boolean multiInstance, int classType) { String str = ""; if (numericPredictor) str += " numeric"; if (nominalPredictor) { if (str.length() > 0) str += " &"; str += " nominal"; } if (stringPredictor) { if (str.length() > 0) str += " &"; str += " string"; } if (datePredictor) { if (str.length() > 0) str += " &"; str += " date"; } if (relationalPredictor) { if (str.length() > 0) str += " &"; str += " relational"; } str += " predictors)"; switch (classType) { case Attribute.NUMERIC: str = " (numeric class," + str; break; case Attribute.NOMINAL: str = " (nominal class," + str; break; case Attribute.STRING: str = " (string class," + str; break; case Attribute.DATE: str = " (date class," + str; break; case Attribute.RELATIONAL: str = " (relational class," + str; break; } print(str); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.33 $"); } /** * Test method for this class * * @param args the commandline parameters */ public static void main(String [] args) { runCheck(new CheckClassifier(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy