All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.IteratedSingleClassifierEnhancer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    IteratedSingleClassifierEnhancer.java
 *    Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers;

import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Vector;

/**
 * Abstract utility class for handling settings common to
 * meta classifiers that build an ensemble from a single base learner.  
 *
 * @author Eibe Frank ([email protected])
 * @version $Revision: 1.4 $
 */
public abstract class IteratedSingleClassifierEnhancer 
  extends SingleClassifierEnhancer {

  /** for serialization */
  private static final long serialVersionUID = -6217979135443319724L;
  
  /** Array for storing the generated base classifiers. */
  protected Classifier[] m_Classifiers;
  
  /** The number of iterations. */
  protected int m_NumIterations = 10;

  /** 
   * Stump method for building the classifiers.
   *
   * @param data the training data to be used for generating the
   * bagged classifier.
   * @exception Exception if the classifier could not be built successfully
   */
  public void buildClassifier(Instances data) throws Exception {

    if (m_Classifier == null) {
      throw new Exception("A base classifier has not been specified!");
    }
    m_Classifiers = Classifier.makeCopies(m_Classifier, m_NumIterations);
  }

  /**
   * Returns an enumeration describing the available options.
   *
   * @return an enumeration of all the available options.
   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(2);

    newVector.addElement(new Option(
	      "\tNumber of iterations.\n"
	      + "\t(default 10)",
	      "I", 1, "-I "));

    Enumeration enu = super.listOptions();
    while (enu.hasMoreElements()) {
      newVector.addElement(enu.nextElement());
    }
    return newVector.elements();
  }

  /**
   * Parses a given list of options. Valid options are:

* * -W classname
* Specify the full class name of the base learner.

* * -I num
* Set the number of iterations (default 10).

* * Options after -- are passed to the designated classifier.

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String iterations = Utils.getOption('I', options); if (iterations.length() != 0) { setNumIterations(Integer.parseInt(iterations)); } else { setNumIterations(10); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 2]; int current = 0; options[current++] = "-I"; options[current++] = "" + getNumIterations(); System.arraycopy(superOptions, 0, options, current, superOptions.length); return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numIterationsTipText() { return "The number of iterations to be performed."; } /** * Sets the number of bagging iterations */ public void setNumIterations(int numIterations) { m_NumIterations = numIterations; } /** * Gets the number of bagging iterations * * @return the maximum number of bagging iterations */ public int getNumIterations() { return m_NumIterations; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy