All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.HNB Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    HNB.java
 *    Copyright (C) 2004 Liangxiao Jiang
 */

package weka.classifiers.bayes;

import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

/**
 
 * Contructs Hidden Naive Bayes classification model with high classification accuracy and AUC.
*
* For more information refer to:
*
* H. Zhang, L. Jiang, J. Su: Hidden Naive Bayes. In: Twentieth National Conference on Artificial Intelligence, 919-924, 2005. *

* * BibTeX: *

 * @inproceedings{Zhang2005,
 *    author = {H. Zhang and L. Jiang and J. Su},
 *    booktitle = {Twentieth National Conference on Artificial Intelligence},
 *    pages = {919-924},
 *    publisher = {AAAI Press},
 *    title = {Hidden Naive Bayes},
 *    year = {2005}
 * }
 * 
*

* * Valid options are:

* *

 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author H. Zhang ([email protected]) * @author Liangxiao Jiang ([email protected]) * @version $Revision: 5516 $ */ public class HNB extends Classifier implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -4503874444306113214L; /** The number of each class value occurs in the dataset */ private double [] m_ClassCounts; /** The number of class and two attributes values occurs in the dataset */ private double [][][] m_ClassAttAttCounts; /** The number of values for each attribute in the dataset */ private int [] m_NumAttValues; /** The number of values for all attributes in the dataset */ private int m_TotalAttValues; /** The number of classes in the dataset */ private int m_NumClasses; /** The number of attributes including class in the dataset */ private int m_NumAttributes; /** The number of instances in the dataset */ private int m_NumInstances; /** The index of the class attribute in the dataset */ private int m_ClassIndex; /** The starting index of each attribute in the dataset */ private int[] m_StartAttIndex; /** The 2D array of conditional mutual information of each pair attributes */ private double[][] m_condiMutualInfo; /** * Returns a string describing this classifier. * * @return a description of the data generator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Contructs Hidden Naive Bayes classification model with high " + "classification accuracy and AUC.\n\n" + "For more information refer to:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "H. Zhang and L. Jiang and J. Su"); result.setValue(Field.TITLE, "Hidden Naive Bayes"); result.setValue(Field.BOOKTITLE, "Twentieth National Conference on Artificial Intelligence"); result.setValue(Field.YEAR, "2005"); result.setValue(Field.PAGES, "919-924"); result.setValue(Field.PUBLISHER, "AAAI Press"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @exception Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); // reset variable m_NumClasses = instances.numClasses(); m_ClassIndex = instances.classIndex(); m_NumAttributes = instances.numAttributes(); m_NumInstances = instances.numInstances(); m_TotalAttValues = 0; // allocate space for attribute reference arrays m_StartAttIndex = new int[m_NumAttributes]; m_NumAttValues = new int[m_NumAttributes]; // set the starting index of each attribute and the number of values for // each attribute and the total number of values for all attributes (not including class). for(int i = 0; i < m_NumAttributes; i++) { if(i != m_ClassIndex) { m_StartAttIndex[i] = m_TotalAttValues; m_NumAttValues[i] = instances.attribute(i).numValues(); m_TotalAttValues += m_NumAttValues[i]; } else { m_StartAttIndex[i] = -1; m_NumAttValues[i] = m_NumClasses; } } // allocate space for counts and frequencies m_ClassCounts = new double[m_NumClasses]; m_ClassAttAttCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; // Calculate the counts for(int k = 0; k < m_NumInstances; k++) { int classVal=(int)instances.instance(k).classValue(); m_ClassCounts[classVal] ++; int[] attIndex = new int[m_NumAttributes]; for(int i = 0; i < m_NumAttributes; i++) { if(i == m_ClassIndex) attIndex[i] = -1; else attIndex[i] = m_StartAttIndex[i] + (int)instances.instance(k).value(i); } for(int Att1 = 0; Att1 < m_NumAttributes; Att1++) { if(attIndex[Att1] == -1) continue; for(int Att2 = 0; Att2 < m_NumAttributes; Att2++) { if((attIndex[Att2] != -1)) { m_ClassAttAttCounts[classVal][attIndex[Att1]][attIndex[Att2]] ++; } } } } //compute conditional mutual information of each pair attributes (not including class) m_condiMutualInfo=new double[m_NumAttributes][m_NumAttributes]; for(int son=0;son0){ prob=prob/condiMutualInfoSum; probs[classVal] *= prob; } else{ prob=(m_ClassAttAttCounts[classVal][sIndex][sIndex]+1.0/m_NumAttValues[son])/(m_ClassCounts[classVal]+1.0); probs[classVal]*= prob; } attIndex[son] = sIndex; } } Utils.normalize(probs); return probs; } /** * returns a string representation of the classifier * * @return a representation of the classifier */ public String toString() { return "HNB (Hidden Naive Bayes)"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5516 $"); } /** * Main method for testing this class. * * @param args the options */ public static void main(String[] args) { runClassifier(new HNB(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy