All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.ADNode Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * ADNode.java
 * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
 * 
 */

package weka.classifiers.bayes.net;

import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.io.FileReader;
import java.io.Serializable;

/**
 * The ADNode class implements the ADTree datastructure which increases
 * the speed with which sub-contingency tables can be constructed from
 * a data set in an Instances object. For details, see: 

* * Andrew W. Moore, Mary S. Lee (1998). Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets. Journal of Artificial Intelligence Research. 8:67-91. *

* * BibTeX: *

 * @article{Moore1998,
 *    author = {Andrew W. Moore and Mary S. Lee},
 *    journal = {Journal of Artificial Intelligence Research},
 *    pages = {67-91},
 *    title = {Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets},
 *    volume = {8},
 *    year = {1998}
 * }
 * 
*

* * @author Remco Bouckaert ([email protected]) * @version $Revision: 1.7 $ */ public class ADNode implements Serializable, TechnicalInformationHandler, RevisionHandler { /** for serialization */ static final long serialVersionUID = 397409728366910204L; final static int MIN_RECORD_SIZE = 0; /** list of VaryNode children **/ public VaryNode [] m_VaryNodes; /** list of Instance children (either m_Instances or m_VaryNodes is instantiated) **/ public Instance [] m_Instances; /** count **/ public int m_nCount; /** first node in VaryNode array **/ public int m_nStartNode; /** Creates new ADNode */ public ADNode() { } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Andrew W. Moore and Mary S. Lee"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets"); result.setValue(Field.JOURNAL, "Journal of Artificial Intelligence Research"); result.setValue(Field.VOLUME, "8"); result.setValue(Field.PAGES, "67-91"); return result; } /** create sub tree * @param iNode index of the lowest node in the tree * @param nRecords set of records in instances to be considered * @param instances data set * @return VaryNode representing part of an ADTree **/ public static VaryNode makeVaryNode(int iNode, FastVector nRecords, Instances instances) { VaryNode _VaryNode = new VaryNode(iNode); int nValues = instances.attribute(iNode).numValues(); // reserve memory and initialize FastVector [] nChildRecords = new FastVector[nValues]; for (int iChild = 0; iChild < nValues; iChild++) { nChildRecords[iChild] = new FastVector(); } // divide the records among children for (int iRecord = 0; iRecord < nRecords.size(); iRecord++) { int iInstance = ((Integer) nRecords.elementAt(iRecord)).intValue(); nChildRecords[(int) instances.instance(iInstance).value(iNode)].addElement(new Integer(iInstance)); } // find most common value int nCount = nChildRecords[0].size(); int nMCV = 0; for (int iChild = 1; iChild < nValues; iChild++) { if (nChildRecords[iChild].size() > nCount) { nCount = nChildRecords[iChild].size(); nMCV = iChild; } } _VaryNode.m_nMCV = nMCV; // determine child nodes _VaryNode.m_ADNodes = new ADNode[nValues]; for (int iChild = 0; iChild < nValues; iChild++) { if (iChild == nMCV || nChildRecords[iChild].size() == 0) { _VaryNode.m_ADNodes[iChild] = null; } else { _VaryNode.m_ADNodes[iChild] = makeADTree(iNode + 1, nChildRecords[iChild], instances); } } return _VaryNode; } // MakeVaryNode /** * create sub tree * * @param iNode index of the lowest node in the tree * @param nRecords set of records in instances to be considered * @param instances data set * @return ADNode representing an ADTree */ public static ADNode makeADTree(int iNode, FastVector nRecords, Instances instances) { ADNode _ADNode = new ADNode(); _ADNode.m_nCount = nRecords.size(); _ADNode.m_nStartNode = iNode; if (nRecords.size() < MIN_RECORD_SIZE) { _ADNode.m_Instances = new Instance[nRecords.size()]; for (int iInstance = 0; iInstance < nRecords.size(); iInstance++) { _ADNode.m_Instances[iInstance] = instances.instance(((Integer) nRecords.elementAt(iInstance)).intValue()); } } else { _ADNode.m_VaryNodes = new VaryNode[instances.numAttributes() - iNode]; for (int iNode2 = iNode; iNode2 < instances.numAttributes(); iNode2++) { _ADNode.m_VaryNodes[iNode2 - iNode] = makeVaryNode(iNode2, nRecords, instances); } } return _ADNode; } // MakeADTree /** * create AD tree from set of instances * * @param instances data set * @return ADNode representing an ADTree */ public static ADNode makeADTree(Instances instances) { FastVector nRecords = new FastVector(instances.numInstances()); for (int iRecord = 0; iRecord < instances.numInstances(); iRecord++) { nRecords.addElement(new Integer(iRecord)); } return makeADTree(0, nRecords, instances); } // MakeADTree /** * get counts for specific instantiation of a set of nodes * * @param nCounts - array for storing counts * @param nNodes - array of node indexes * @param nOffsets - offset for nodes in nNodes in nCounts * @param iNode - index into nNode indicating current node * @param iOffset - Offset into nCounts due to nodes below iNode * @param bSubstract - indicate whether counts should be added or substracted */ public void getCounts( int [] nCounts, int [] nNodes, int [] nOffsets, int iNode, int iOffset, boolean bSubstract ) { //for (int iNode2 = 0; iNode2 < nCounts.length; iNode2++) { // System.out.print(nCounts[iNode2] + " "); //} //System.out.println(); if (iNode >= nNodes.length) { if (bSubstract) { nCounts[iOffset] -= m_nCount; } else { nCounts[iOffset] += m_nCount; } return; } else { if (m_VaryNodes != null) { m_VaryNodes[nNodes[iNode] - m_nStartNode].getCounts(nCounts, nNodes, nOffsets, iNode, iOffset, this, bSubstract); } else { for (int iInstance = 0; iInstance < m_Instances.length; iInstance++) { int iOffset2 = iOffset; Instance instance = m_Instances[iInstance]; for (int iNode2 = iNode; iNode2 < nNodes.length; iNode2++) { iOffset2 = iOffset2 + nOffsets[iNode2] * (int) instance.value(nNodes[iNode2]); } if (bSubstract) { nCounts[iOffset2]--; } else { nCounts[iOffset2]++; } } } } } // getCounts /** * print is used for debugging only and shows the ADTree in ASCII graphics */ public void print() { String sTab = new String();for (int i = 0; i < m_nStartNode; i++) { sTab = sTab + " "; } System.out.println(sTab + "Count = " + m_nCount); if (m_VaryNodes != null) { for (int iNode = 0; iNode < m_VaryNodes.length; iNode++) { System.out.println(sTab + "Node " + (iNode + m_nStartNode)); m_VaryNodes[iNode].print(sTab); } } else { System.out.println(m_Instances); } } /** * for testing only * * @param argv the commandline options */ public static void main(String [] argv) { try { Instances instances = new Instances(new FileReader("\\iris.2.arff")); ADNode ADTree = ADNode.makeADTree(instances); int [] nCounts = new int[12]; int [] nNodes = new int[3]; int [] nOffsets = new int[3]; nNodes[0] = 0; nNodes[1] = 3; nNodes[2] = 4; nOffsets[0] = 2; nOffsets[1] = 1; nOffsets[2] = 4; ADTree.print(); ADTree.getCounts(nCounts, nNodes, nOffsets,0, 0, false); } catch (Throwable t) { t.printStackTrace(); } } // main /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.7 $"); } } // class ADNode





© 2015 - 2025 Weber Informatics LLC | Privacy Policy