All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.estimate.SimpleEstimator Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * BayesNet.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 * 
 */
 
package weka.classifiers.bayes.net.estimate;

import weka.classifiers.bayes.BayesNet;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.estimators.Estimator;

import java.util.Enumeration;

/** 
 
 * SimpleEstimator is used for estimating the conditional probability tables of a Bayes network once the structure has been learned. Estimates probabilities directly from data.
 * 

* * Valid options are:

* *

 -A <alpha>
 *  Initial count (alpha)
 * 
* * * @author Remco Bouckaert ([email protected]) * @version $Revision: 1.6 $ */ public class SimpleEstimator extends BayesNetEstimator { /** for serialization */ static final long serialVersionUID = 5874941612331806172L; /** * Returns a string describing this object * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "SimpleEstimator is used for estimating the conditional probability " + "tables of a Bayes network once the structure has been learned. " + "Estimates probabilities directly from data."; } /** * estimateCPTs estimates the conditional probability tables for the Bayes * Net using the network structure. * * @param bayesNet the bayes net to use * @throws Exception if something goes wrong */ public void estimateCPTs(BayesNet bayesNet) throws Exception { initCPTs(bayesNet); // Compute counts Enumeration enumInsts = bayesNet.m_Instances.enumerateInstances(); while (enumInsts.hasMoreElements()) { Instance instance = (Instance) enumInsts.nextElement(); updateClassifier(bayesNet, instance); } } // estimateCPTs /** * Updates the classifier with the given instance. * * @param bayesNet the bayes net to use * @param instance the new training instance to include in the model * @throws Exception if the instance could not be incorporated in * the model. */ public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception { for (int iAttribute = 0; iAttribute < bayesNet.m_Instances.numAttributes(); iAttribute++) { double iCPT = 0; for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getNrOfParents(); iParent++) { int nParent = bayesNet.getParentSet(iAttribute).getParent(iParent); iCPT = iCPT * bayesNet.m_Instances.attribute(nParent).numValues() + instance.value(nParent); } bayesNet.m_Distributions[iAttribute][(int) iCPT].addValue(instance.value(iAttribute), instance.weight()); } } // updateClassifier /** * initCPTs reserves space for CPTs and set all counts to zero * * @param bayesNet the bayes net to use * @throws Exception if something goes wrong */ public void initCPTs(BayesNet bayesNet) throws Exception { Instances instances = bayesNet.m_Instances; // Reserve space for CPTs int nMaxParentCardinality = 1; for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { if (bayesNet.getParentSet(iAttribute).getCardinalityOfParents() > nMaxParentCardinality) { nMaxParentCardinality = bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); } } // Reserve plenty of memory bayesNet.m_Distributions = new Estimator[instances.numAttributes()][nMaxParentCardinality]; // estimate CPTs for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); iParent++) { bayesNet.m_Distributions[iAttribute][iParent] = new DiscreteEstimatorBayes(instances.attribute(iAttribute).numValues(), m_fAlpha); } } } // initCPTs /** * Calculates the class membership probabilities for the given test * instance. * * @param bayesNet the bayes net to use * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if there is a problem generating the prediction */ public double[] distributionForInstance(BayesNet bayesNet, Instance instance) throws Exception { Instances instances = bayesNet.m_Instances; int nNumClasses = instances.numClasses(); double[] fProbs = new double[nNumClasses]; for (int iClass = 0; iClass < nNumClasses; iClass++) { fProbs[iClass] = 1.0; } for (int iClass = 0; iClass < nNumClasses; iClass++) { double logfP = 0; for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { double iCPT = 0; for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getNrOfParents(); iParent++) { int nParent = bayesNet.getParentSet(iAttribute).getParent(iParent); if (nParent == instances.classIndex()) { iCPT = iCPT * nNumClasses + iClass; } else { iCPT = iCPT * instances.attribute(nParent).numValues() + instance.value(nParent); } } if (iAttribute == instances.classIndex()) { // fP *= // m_Distributions[iAttribute][(int) iCPT].getProbability(iClass); logfP += Math.log(bayesNet.m_Distributions[iAttribute][(int) iCPT].getProbability(iClass)); } else { // fP *= // m_Distributions[iAttribute][(int) iCPT] // .getProbability(instance.value(iAttribute)); logfP += Math.log(bayesNet.m_Distributions[iAttribute][(int) iCPT].getProbability(instance.value(iAttribute))); } } // fProbs[iClass] *= fP; fProbs[iClass] += logfP; } // Find maximum double fMax = fProbs[0]; for (int iClass = 0; iClass < nNumClasses; iClass++) { if (fProbs[iClass] > fMax) { fMax = fProbs[iClass]; } } // transform from log-space to normal-space for (int iClass = 0; iClass < nNumClasses; iClass++) { fProbs[iClass] = Math.exp(fProbs[iClass] - fMax); } // Display probabilities Utils.normalize(fProbs); return fProbs; } // distributionForInstance /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.6 $"); } } // SimpleEstimator




© 2015 - 2025 Weber Informatics LLC | Privacy Policy