All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.search.SearchAlgorithm Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * SearchAlgorithm.java
 * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
 * 
 */
package weka.classifiers.bayes.net.search;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.ParentSet;
import weka.core.Instances;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

/**
 * This is the base class for all search algorithms for learning Bayes networks.
 * It contains some common code, used by other network structure search algorithms,
 * and should not be used by itself.
 *
 
 
 * 
 * @author Remco Bouckaert
 * @version $Revision: 1.9 $
 */
public class SearchAlgorithm 
    implements OptionHandler, Serializable, RevisionHandler {
  
    /** for serialization */
    static final long serialVersionUID = 6164792240778525312L;
  
    /**
     * Holds upper bound on number of parents
     */
    protected int m_nMaxNrOfParents = 1;

    /**
     * determines whether initial structure is an empty graph or a Naive Bayes network
     */
    protected boolean m_bInitAsNaiveBayes = true;

    /**
     * Determines whether after structure is found a MarkovBlanketClassifier correction should be applied
     * If this is true, m_bInitAsNaiveBayes is overridden and interpreted as false.
     */
    protected boolean m_bMarkovBlanketClassifier = false;

    /** c'tor **/
    public SearchAlgorithm() {
    } // SearchAlgorithm

    /**
     * AddArcMakesSense checks whether adding the arc from iAttributeTail to iAttributeHead
     * does not already exists and does not introduce a cycle
     * 
     * @param bayesNet
     * @param instances
     * @param iAttributeHead index of the attribute that becomes head of the arrow
     * @param iAttributeTail index of the attribute that becomes tail of the arrow
     * @return true if adding arc is allowed, otherwise false
     */
    protected boolean addArcMakesSense(
        BayesNet bayesNet,
        Instances instances,
        int iAttributeHead,
        int iAttributeTail) {
        if (iAttributeHead == iAttributeTail) {
            return false;
        }

        // sanity check: arc should not be in parent set already
        if (isArc(bayesNet, iAttributeHead, iAttributeTail)) {
               return false;
        }

        // sanity check: arc should not introduce a cycle
        int nNodes = instances.numAttributes();
        boolean[] bDone = new boolean[nNodes];

        for (int iNode = 0; iNode < nNodes; iNode++) {
            bDone[iNode] = false;
        }

        // check for cycles
        bayesNet.getParentSet(iAttributeHead).addParent(iAttributeTail, instances);

        for (int iNode = 0; iNode < nNodes; iNode++) {

            // find a node for which all parents are 'done'
            boolean bFound = false;

            for (int iNode2 = 0; !bFound && iNode2 < nNodes; iNode2++) {
                if (!bDone[iNode2]) {
                    boolean bHasNoParents = true;

                    for (int iParent = 0; iParent < bayesNet.getParentSet(iNode2).getNrOfParents(); iParent++) {
                        if (!bDone[bayesNet.getParentSet(iNode2).getParent(iParent)]) {
                            bHasNoParents = false;
                        }
                    }

                    if (bHasNoParents) {
                        bDone[iNode2] = true;
                        bFound = true;
                    }
                }
            }

            if (!bFound) {
                bayesNet.getParentSet(iAttributeHead).deleteLastParent(instances);

                return false;
            }
        }

        bayesNet.getParentSet(iAttributeHead).deleteLastParent(instances);

        return true;
    } // AddArcMakesCycle

    /**
     * reverseArcMakesSense checks whether the arc from iAttributeTail to
     * iAttributeHead exists and reversing does not introduce a cycle
     * 
     * @param bayesNet
     * @param instances
     * @param iAttributeHead index of the attribute that is head of the arrow
     * @param iAttributeTail index of the attribute that is tail of the arrow
     * @return true if the arc from iAttributeTail to iAttributeHead exists and reversing does not introduce a cycle 
     */
    protected boolean reverseArcMakesSense(
        BayesNet bayesNet,
        Instances instances,
        int iAttributeHead,
        int iAttributeTail) {
      
        if (iAttributeHead == iAttributeTail) {
            return false;
        }

        // sanity check: arc should be in parent set already
        if (!isArc(bayesNet, iAttributeHead, iAttributeTail)) {
            return false;
        }

        // sanity check: arc should not introduce a cycle
        int nNodes = instances.numAttributes();
        boolean[] bDone = new boolean[nNodes];

        for (int iNode = 0; iNode < nNodes; iNode++) {
            bDone[iNode] = false;
        }

        // check for cycles
		bayesNet.getParentSet(iAttributeTail).addParent(iAttributeHead, instances);

        for (int iNode = 0; iNode < nNodes; iNode++) {

            // find a node for which all parents are 'done'
            boolean bFound = false;

            for (int iNode2 = 0; !bFound && iNode2 < nNodes; iNode2++) {
                if (!bDone[iNode2]) {
                	ParentSet parentSet = bayesNet.getParentSet(iNode2);
                    boolean bHasNoParents = true;
                    for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) {
                        if (!bDone[parentSet.getParent(iParent)]) {
                        	
                            // this one has a parent which is not 'done' UNLESS it is the arc to be reversed
                            if (!(iNode2 == iAttributeHead && parentSet.getParent(iParent) == iAttributeTail)) {
                                bHasNoParents = false;
                            }
                        }
                    }

                    if (bHasNoParents) {
                        bDone[iNode2] = true;
                        bFound = true;
                    }
                }
            }

            if (!bFound) {
                bayesNet.getParentSet(iAttributeTail).deleteLastParent(instances);
                return false;
            }
        }

        bayesNet.getParentSet(iAttributeTail).deleteLastParent(instances);
        return true;
    } // ReverseArcMakesCycle

    /**
     * IsArc checks whether the arc from iAttributeTail to iAttributeHead already exists
     * 
     * @param bayesNet
     * @param iAttributeHead index of the attribute that becomes head of the arrow
     * @param iAttributeTail index of the attribute that becomes tail of the arrow
     * @return true if the arc from iAttributeTail to iAttributeHead already exists
     */
    protected boolean isArc(BayesNet bayesNet, int iAttributeHead, int iAttributeTail) {
        for (int iParent = 0; iParent < bayesNet.getParentSet(iAttributeHead).getNrOfParents(); iParent++) {
            if (bayesNet.getParentSet(iAttributeHead).getParent(iParent) == iAttributeTail) {
                return true;
            }
        }

        return false;
    } // IsArc

    /**
     * Returns an enumeration describing the available options.
     *
     * @return an enumeration of all the available options.
     */
    public Enumeration listOptions() {
        return new Vector(0).elements();
    } // listOption

    /**
     * Parses a given list of options. 

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { } // setOptions /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { return new String[0]; } // getOptions /** * a string representation of the algorithm * * @return a string representation */ public String toString() { return "SearchAlgorithm\n"; } // toString /** * buildStructure determines the network structure/graph of the network. * The default behavior is creating a network where all nodes have the first * node as its parent (i.e., a BayesNet that behaves like a naive Bayes classifier). * This method can be overridden by derived classes to restrict the class * of network structures that are acceptable. * * @param bayesNet the network * @param instances the data to use * @throws Exception if something goes wrong */ public void buildStructure(BayesNet bayesNet, Instances instances) throws Exception { if (m_bInitAsNaiveBayes) { int iClass = instances.classIndex(); // initialize parent sets to have arrow from classifier node to // each of the other nodes for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { if (iAttribute != iClass) { bayesNet.getParentSet(iAttribute).addParent(iClass, instances); } } } search(bayesNet, instances); if (m_bMarkovBlanketClassifier) { doMarkovBlanketCorrection(bayesNet, instances); } } // buildStructure /** * * @param bayesNet * @param instances */ protected void search(BayesNet bayesNet, Instances instances) throws Exception { // placeholder with implementation in derived classes } // search /** * for each node in the network make sure it is in the * Markov blanket of the classifier node, and if not, * add arrows so that it is. If the node is an ancestor * of the classifier node, add arrow pointing to the classifier * node, otherwise, add arrow pointing to attribute node. * * @param bayesNet * @param instances */ protected void doMarkovBlanketCorrection(BayesNet bayesNet, Instances instances) { // Add class node as parent if it is not in the Markov Boundary int iClass = instances.classIndex(); ParentSet ancestors = new ParentSet(); int nOldSize = 0; ancestors.addParent(iClass, instances); while (nOldSize != ancestors.getNrOfParents()) { nOldSize = ancestors.getNrOfParents(); for (int iNode = 0; iNode < nOldSize; iNode++) { int iCurrent = ancestors.getParent(iNode); ParentSet p = bayesNet.getParentSet(iCurrent); for (int iParent = 0; iParent < p.getNrOfParents(); iParent++) { if (!ancestors.contains(p.getParent(iParent))) { ancestors.addParent(p.getParent(iParent), instances); } } } } for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { boolean bIsInMarkovBoundary = (iAttribute == iClass) || bayesNet.getParentSet(iAttribute).contains(iClass) || bayesNet.getParentSet(iClass).contains(iAttribute); for (int iAttribute2 = 0; !bIsInMarkovBoundary && iAttribute2 < instances.numAttributes(); iAttribute2++) { bIsInMarkovBoundary = bayesNet.getParentSet(iAttribute2).contains(iAttribute) && bayesNet.getParentSet(iAttribute2).contains(iClass); } if (!bIsInMarkovBoundary) { if (ancestors.contains(iAttribute)) { if (bayesNet.getParentSet(iClass).getCardinalityOfParents() < 1024) { bayesNet.getParentSet(iClass).addParent(iAttribute, instances); } else { // too bad } } else { bayesNet.getParentSet(iAttribute).addParent(iClass, instances); } } } } // doMarkovBlanketCorrection /** * * @param bMarkovBlanketClassifier */ protected void setMarkovBlanketClassifier(boolean bMarkovBlanketClassifier) { m_bMarkovBlanketClassifier = bMarkovBlanketClassifier; } /** * * @return */ protected boolean getMarkovBlanketClassifier() { return m_bMarkovBlanketClassifier; } /** * @return a string to describe the MaxNrOfParentsoption. */ public String maxNrOfParentsTipText() { return "Set the maximum number of parents a node in the Bayes net can have." + " When initialized as Naive Bayes, setting this parameter to 1 results in" + " a Naive Bayes classifier. When set to 2, a Tree Augmented Bayes Network (TAN)" + " is learned, and when set >2, a Bayes Net Augmented Bayes Network (BAN)" + " is learned. By setting it to a value much larger than the number of nodes" + " in the network (the default of 100000 pretty much guarantees this), no" + " restriction on the number of parents is enforced"; } // maxNrOfParentsTipText /** * @return a string to describe the InitAsNaiveBayes option. */ public String initAsNaiveBayesTipText() { return "When set to true (default), the initial network used for structure learning" + " is a Naive Bayes Network, that is, a network with an arrow from the classifier" + " node to each other node. When set to false, an empty network is used as initial" + " network structure"; } // initAsNaiveBayesTipText /** * @return a string to describe the MarkovBlanketClassifier option. */ protected String markovBlanketClassifierTipText() { return "When set to true (default is false), after a network structure is learned" + " a Markov Blanket correction is applied to the network structure. This ensures" + " that all nodes in the network are part of the Markov blanket of the classifier" + " node."; } // markovBlanketClassifierTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } } // class SearchAlgorithm





© 2015 - 2025 Weber Informatics LLC | Privacy Policy