All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.search.global.SimulatedAnnealing Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * SimulatedAnnealing.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 * 
 */
 
package weka.classifiers.bayes.net.search.global;

import weka.classifiers.bayes.BayesNet;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/** 
 
 * This Bayes Network learning algorithm uses the general purpose search method of simulated annealing to find a well scoring network structure.
*
* For more information see:
*
* R.R. Bouckaert (1995). Bayesian Belief Networks: from Construction to Inference. Utrecht, Netherlands. *

* * BibTeX: *

 * @phdthesis{Bouckaert1995,
 *    address = {Utrecht, Netherlands},
 *    author = {R.R. Bouckaert},
 *    institution = {University of Utrecht},
 *    title = {Bayesian Belief Networks: from Construction to Inference},
 *    year = {1995}
 * }
 * 
*

* * Valid options are:

* *

 -A <float>
 *  Start temperature
* *
 -U <integer>
 *  Number of runs
* *
 -D <float>
 *  Delta temperature
* *
 -R <seed>
 *  Random number seed
* *
 -mbc
 *  Applies a Markov Blanket correction to the network structure, 
 *  after a network structure is learned. This ensures that all 
 *  nodes in the network are part of the Markov blanket of the 
 *  classifier node.
* *
 -S [LOO-CV|k-Fold-CV|Cumulative-CV]
 *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
* *
 -Q
 *  Use probabilistic or 0/1 scoring.
 *  (default probabilistic scoring)
* * * @author Remco Bouckaert ([email protected]) * @version $Revision: 1.6 $ */ public class SimulatedAnnealing extends GlobalScoreSearchAlgorithm implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -5482721887881010916L; /** start temperature **/ double m_fTStart = 10; /** change in temperature at every run **/ double m_fDelta = 0.999; /** number of runs **/ int m_nRuns = 10000; /** use the arc reversal operator **/ boolean m_bUseArcReversal = false; /** random number seed **/ int m_nSeed = 1; /** random number generator **/ Random m_random; /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.PHDTHESIS); result.setValue(Field.AUTHOR, "R.R. Bouckaert"); result.setValue(Field.YEAR, "1995"); result.setValue(Field.TITLE, "Bayesian Belief Networks: from Construction to Inference"); result.setValue(Field.INSTITUTION, "University of Utrecht"); result.setValue(Field.ADDRESS, "Utrecht, Netherlands"); return result; } /** * * @param bayesNet the bayes net to use * @param instances the data to use * @throws Exception if something goes wrong */ public void search (BayesNet bayesNet, Instances instances) throws Exception { m_random = new Random(m_nSeed); // determine base scores double fCurrentScore = calcScore(bayesNet); // keep track of best scoring network double fBestScore = fCurrentScore; BayesNet bestBayesNet = new BayesNet(); bestBayesNet.m_Instances = instances; bestBayesNet.initStructure(); copyParentSets(bestBayesNet, bayesNet); double fTemp = m_fTStart; for (int iRun = 0; iRun < m_nRuns; iRun++) { boolean bRunSucces = false; double fDeltaScore = 0.0; while (!bRunSucces) { // pick two nodes at random int iTailNode = Math.abs(m_random.nextInt()) % instances.numAttributes(); int iHeadNode = Math.abs(m_random.nextInt()) % instances.numAttributes(); while (iTailNode == iHeadNode) { iHeadNode = Math.abs(m_random.nextInt()) % instances.numAttributes(); } if (isArc(bayesNet, iHeadNode, iTailNode)) { bRunSucces = true; // either try a delete bayesNet.getParentSet(iHeadNode).deleteParent(iTailNode, instances); double fScore = calcScore(bayesNet); fDeltaScore = fScore - fCurrentScore; //System.out.println("Try delete " + iTailNode + "->" + iHeadNode + " dScore = " + fDeltaScore); if (fTemp * Math.log((Math.abs(m_random.nextInt()) % 10000)/10000.0 + 1e-100) < fDeltaScore) { //System.out.println("success!!!"); fCurrentScore = fScore; } else { // roll back bayesNet.getParentSet(iHeadNode).addParent(iTailNode, instances); } } else { // try to add an arc if (addArcMakesSense(bayesNet, instances, iHeadNode, iTailNode)) { bRunSucces = true; double fScore = calcScoreWithExtraParent(iHeadNode, iTailNode); fDeltaScore = fScore - fCurrentScore; //System.out.println("Try add " + iTailNode + "->" + iHeadNode + " dScore = " + fDeltaScore); if (fTemp * Math.log((Math.abs(m_random.nextInt()) % 10000)/10000.0 + 1e-100) < fDeltaScore) { //System.out.println("success!!!"); bayesNet.getParentSet(iHeadNode).addParent(iTailNode, instances); fCurrentScore = fScore; } } } } if (fCurrentScore > fBestScore) { copyParentSets(bestBayesNet, bayesNet); } fTemp = fTemp * m_fDelta; } copyParentSets(bayesNet, bestBayesNet); } // buildStructure /** CopyParentSets copies parent sets of source to dest BayesNet * @param dest destination network * @param source source network */ void copyParentSets(BayesNet dest, BayesNet source) { int nNodes = source.getNrOfNodes(); // clear parent set first for (int iNode = 0; iNode < nNodes; iNode++) { dest.getParentSet(iNode).copy(source.getParentSet(iNode)); } } // CopyParentSets /** * @return double */ public double getDelta() { return m_fDelta; } /** * @return double */ public double getTStart() { return m_fTStart; } /** * @return int */ public int getRuns() { return m_nRuns; } /** * Sets the m_fDelta. * @param fDelta The m_fDelta to set */ public void setDelta(double fDelta) { m_fDelta = fDelta; } /** * Sets the m_fTStart. * @param fTStart The m_fTStart to set */ public void setTStart(double fTStart) { m_fTStart = fTStart; } /** * Sets the m_nRuns. * @param nRuns The m_nRuns to set */ public void setRuns(int nRuns) { m_nRuns = nRuns; } /** * @return random number seed */ public int getSeed() { return m_nSeed; } // getSeed /** * Sets the random number seed * @param nSeed The number of the seed to set */ public void setSeed(int nSeed) { m_nSeed = nSeed; } // setSeed /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(3); newVector.addElement(new Option("\tStart temperature", "A", 1, "-A ")); newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U ")); newVector.addElement(new Option("\tDelta temperature", "D", 1, "-D ")); newVector.addElement(new Option("\tRandom number seed", "R", 1, "-R ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -A <float>
	 *  Start temperature
* *
 -U <integer>
	 *  Number of runs
* *
 -D <float>
	 *  Delta temperature
* *
 -R <seed>
	 *  Random number seed
* *
 -mbc
	 *  Applies a Markov Blanket correction to the network structure, 
	 *  after a network structure is learned. This ensures that all 
	 *  nodes in the network are part of the Markov blanket of the 
	 *  classifier node.
* *
 -S [LOO-CV|k-Fold-CV|Cumulative-CV]
	 *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
* *
 -Q
	 *  Use probabilistic or 0/1 scoring.
	 *  (default probabilistic scoring)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String sTStart = Utils.getOption('A', options); if (sTStart.length() != 0) { setTStart(Double.parseDouble(sTStart)); } String sRuns = Utils.getOption('U', options); if (sRuns.length() != 0) { setRuns(Integer.parseInt(sRuns)); } String sDelta = Utils.getOption('D', options); if (sDelta.length() != 0) { setDelta(Double.parseDouble(sDelta)); } String sSeed = Utils.getOption('R', options); if (sSeed.length() != 0) { setSeed(Integer.parseInt(sSeed)); } super.setOptions(options); } /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[8 + superOptions.length]; int current = 0; options[current++] = "-A"; options[current++] = "" + getTStart(); options[current++] = "-U"; options[current++] = "" + getRuns(); options[current++] = "-D"; options[current++] = "" + getDelta(); options[current++] = "-R"; options[current++] = "" + getSeed(); // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } /** * This will return a string describing the classifier. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses the general purpose search method " + "of simulated annealing to find a well scoring network structure.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } // globalInfo /** * @return a string to describe the TStart option. */ public String TStartTipText() { return "Sets the start temperature of the simulated annealing search. "+ "The start temperature determines the probability that a step in the 'wrong' direction in the " + "search space is accepted. The higher the temperature, the higher the probability of acceptance."; } // TStartTipText /** * @return a string to describe the Runs option. */ public String runsTipText() { return "Sets the number of iterations to be performed by the simulated annealing search."; } // runsTipText /** * @return a string to describe the Delta option. */ public String deltaTipText() { return "Sets the factor with which the temperature (and thus the acceptance probability of " + "steps in the wrong direction in the search space) is decreased in each iteration."; } // deltaTipText /** * @return a string to describe the Seed option. */ public String seedTipText() { return "Initialization value for random number generator." + " Setting the seed allows replicability of experiments."; } // seedTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.6 $"); } } // SimulatedAnnealing




© 2015 - 2025 Weber Informatics LLC | Privacy Policy