weka.classifiers.functions.LinearRegression Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* LinearRegression.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.functions;
import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.matrix.Matrix;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import java.util.Enumeration;
import java.util.Vector;
/**
* Class for using linear regression for prediction. Uses the Akaike criterion for model selection, and is able to deal with weighted instances.
*
*
* Valid options are:
*
* -D
* Produce debugging output.
* (default no debugging output)
*
* -S <number of selection method>
* Set the attribute selection method to use. 1 = None, 2 = Greedy.
* (default 0 = M5' method)
*
* -C
* Do not try to eliminate colinear attributes.
*
*
* -R <double>
* Set ridge parameter (default 1.0e-8).
*
*
*
* @author Eibe Frank ([email protected])
* @author Len Trigg ([email protected])
* @version $Revision: 9770 $
*/
public class LinearRegression extends Classifier implements OptionHandler,
WeightedInstancesHandler {
/** for serialization */
static final long serialVersionUID = -3364580862046573747L;
/** Array for storing coefficients of linear regression. */
private double[] m_Coefficients;
/** Which attributes are relevant? */
private boolean[] m_SelectedAttributes;
/** Variable for storing transformed training data. */
private Instances m_TransformedData;
/** The filter for removing missing values. */
private ReplaceMissingValues m_MissingFilter;
/** The filter storing the transformation from nominal to
binary attributes. */
private NominalToBinary m_TransformFilter;
/** The standard deviations of the class attribute */
private double m_ClassStdDev;
/** The mean of the class attribute */
private double m_ClassMean;
/** The index of the class attribute */
private int m_ClassIndex;
/** The attributes means */
private double[] m_Means;
/** The attribute standard deviations */
private double[] m_StdDevs;
/** True if debug output will be printed */
private boolean b_Debug;
/** The current attribute selection method */
private int m_AttributeSelection;
/** Attribute selection method: M5 method */
public static final int SELECTION_M5 = 0;
/** Attribute selection method: No attribute selection */
public static final int SELECTION_NONE = 1;
/** Attribute selection method: Greedy method */
public static final int SELECTION_GREEDY = 2;
/** Attribute selection methods */
public static final Tag [] TAGS_SELECTION = {
new Tag(SELECTION_NONE, "No attribute selection"),
new Tag(SELECTION_M5, "M5 method"),
new Tag(SELECTION_GREEDY, "Greedy method")
};
/** Try to eliminate correlated attributes? */
private boolean m_EliminateColinearAttributes = true;
/** Turn off all checks and conversions? */
private boolean m_checksTurnedOff = false;
/** The ridge parameter */
private double m_Ridge = 1.0e-8;
/**
* Turns off checks for missing values, etc. Use with caution.
* Also turns off scaling.
*/
public void turnChecksOff() {
m_checksTurnedOff = true;
}
/**
* Turns on checks for missing values, etc. Also turns
* on scaling.
*/
public void turnChecksOn() {
m_checksTurnedOff = false;
}
/**
* Returns a string describing this classifier
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Class for using linear regression for prediction. Uses the Akaike "
+"criterion for model selection, and is able to deal with weighted "
+"instances.";
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enable(Capability.DATE_ATTRIBUTES);
result.enable(Capability.MISSING_VALUES);
// class
result.enable(Capability.NUMERIC_CLASS);
result.enable(Capability.DATE_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
return result;
}
/**
* Builds a regression model for the given data.
*
* @param data the training data to be used for generating the
* linear regression function
* @throws Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
if (!m_checksTurnedOff) {
// can classifier handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
data = new Instances(data);
data.deleteWithMissingClass();
}
// Preprocess instances
if (!m_checksTurnedOff) {
m_TransformFilter = new NominalToBinary();
m_TransformFilter.setInputFormat(data);
data = Filter.useFilter(data, m_TransformFilter);
m_MissingFilter = new ReplaceMissingValues();
m_MissingFilter.setInputFormat(data);
data = Filter.useFilter(data, m_MissingFilter);
data.deleteWithMissingClass();
} else {
m_TransformFilter = null;
m_MissingFilter = null;
}
m_ClassIndex = data.classIndex();
m_TransformedData = data;
// Turn all attributes on for a start
m_SelectedAttributes = new boolean[data.numAttributes()];
for (int i = 0; i < data.numAttributes(); i++) {
if (i != m_ClassIndex) {
m_SelectedAttributes[i] = true;
}
}
m_Coefficients = null;
// Compute means and standard deviations
m_Means = new double[data.numAttributes()];
m_StdDevs = new double[data.numAttributes()];
for (int j = 0; j < data.numAttributes(); j++) {
if (j != data.classIndex()) {
m_Means[j] = data.meanOrMode(j);
m_StdDevs[j] = Math.sqrt(data.variance(j));
if (m_StdDevs[j] == 0) {
m_SelectedAttributes[j] = false;
}
}
}
m_ClassStdDev = Math.sqrt(data.variance(m_TransformedData.classIndex()));
m_ClassMean = data.meanOrMode(m_TransformedData.classIndex());
// Perform the regression
findBestModel();
// Save memory
m_TransformedData = new Instances(data, 0);
}
/**
* Classifies the given instance using the linear regression function.
*
* @param instance the test instance
* @return the classification
* @throws Exception if classification can't be done successfully
*/
public double classifyInstance(Instance instance) throws Exception {
// Transform the input instance
Instance transformedInstance = instance;
if (!m_checksTurnedOff) {
m_TransformFilter.input(transformedInstance);
m_TransformFilter.batchFinished();
transformedInstance = m_TransformFilter.output();
m_MissingFilter.input(transformedInstance);
m_MissingFilter.batchFinished();
transformedInstance = m_MissingFilter.output();
}
// Calculate the dependent variable from the regression model
return regressionPrediction(transformedInstance,
m_SelectedAttributes,
m_Coefficients);
}
/**
* Outputs the linear regression model as a string.
*
* @return the model as string
*/
public String toString() {
if (m_TransformedData == null) {
return "Linear Regression: No model built yet.";
}
try {
StringBuffer text = new StringBuffer();
int column = 0;
boolean first = true;
text.append("\nLinear Regression Model\n\n");
text.append(m_TransformedData.classAttribute().name()+" =\n\n");
for (int i = 0; i < m_TransformedData.numAttributes(); i++) {
if ((i != m_ClassIndex)
&& (m_SelectedAttributes[i])) {
if (!first)
text.append(" +\n");
else
first = false;
text.append(Utils.doubleToString(m_Coefficients[column], 12, 4)
+ " * ");
text.append(m_TransformedData.attribute(i).name());
column++;
}
}
text.append(" +\n" +
Utils.doubleToString(m_Coefficients[column], 12, 4));
return text.toString();
} catch (Exception e) {
return "Can't print Linear Regression!";
}
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(4);
newVector.addElement(new Option("\tProduce debugging output.\n"
+ "\t(default no debugging output)",
"D", 0, "-D"));
newVector.addElement(new Option("\tSet the attribute selection method"
+ " to use. 1 = None, 2 = Greedy.\n"
+ "\t(default 0 = M5' method)",
"S", 1, "-S "));
newVector.addElement(new Option("\tDo not try to eliminate colinear"
+ " attributes.\n",
"C", 0, "-C"));
newVector.addElement(new Option("\tSet ridge parameter (default 1.0e-8).\n",
"R", 1, "-R "));
return newVector.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -D
* Produce debugging output.
* (default no debugging output)
*
* -S <number of selection method>
* Set the attribute selection method to use. 1 = None, 2 = Greedy.
* (default 0 = M5' method)
*
* -C
* Do not try to eliminate colinear attributes.
*
*
* -R <double>
* Set ridge parameter (default 1.0e-8).
*
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String selectionString = Utils.getOption('S', options);
if (selectionString.length() != 0) {
setAttributeSelectionMethod(new SelectedTag(Integer
.parseInt(selectionString),
TAGS_SELECTION));
} else {
setAttributeSelectionMethod(new SelectedTag(SELECTION_M5,
TAGS_SELECTION));
}
String ridgeString = Utils.getOption('R', options);
if (ridgeString.length() != 0) {
setRidge(new Double(ridgeString).doubleValue());
} else {
setRidge(1.0e-8);
}
setDebug(Utils.getFlag('D', options));
setEliminateColinearAttributes(!Utils.getFlag('C', options));
}
/**
* Returns the coefficients for this linear model.
*
* @return the coefficients for this linear model
*/
public double[] coefficients() {
double[] coefficients = new double[m_SelectedAttributes.length + 1];
int counter = 0;
for (int i = 0; i < m_SelectedAttributes.length; i++) {
if ((m_SelectedAttributes[i]) && ((i != m_ClassIndex))) {
coefficients[i] = m_Coefficients[counter++];
}
}
coefficients[m_SelectedAttributes.length] = m_Coefficients[counter];
return coefficients;
}
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] options = new String [6];
int current = 0;
options[current++] = "-S";
options[current++] = "" + getAttributeSelectionMethod()
.getSelectedTag().getID();
if (getDebug()) {
options[current++] = "-D";
}
if (!getEliminateColinearAttributes()) {
options[current++] = "-C";
}
options[current++] = "-R";
options[current++] = "" + getRidge();
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String ridgeTipText() {
return "The value of the Ridge parameter.";
}
/**
* Get the value of Ridge.
*
* @return Value of Ridge.
*/
public double getRidge() {
return m_Ridge;
}
/**
* Set the value of Ridge.
*
* @param newRidge Value to assign to Ridge.
*/
public void setRidge(double newRidge) {
m_Ridge = newRidge;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String eliminateColinearAttributesTipText() {
return "Eliminate colinear attributes.";
}
/**
* Get the value of EliminateColinearAttributes.
*
* @return Value of EliminateColinearAttributes.
*/
public boolean getEliminateColinearAttributes() {
return m_EliminateColinearAttributes;
}
/**
* Set the value of EliminateColinearAttributes.
*
* @param newEliminateColinearAttributes Value to assign to EliminateColinearAttributes.
*/
public void setEliminateColinearAttributes(boolean newEliminateColinearAttributes) {
m_EliminateColinearAttributes = newEliminateColinearAttributes;
}
/**
* Get the number of coefficients used in the model
*
* @return the number of coefficients
*/
public int numParameters()
{
return m_Coefficients.length-1;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String attributeSelectionMethodTipText() {
return "Set the method used to select attributes for use in the linear "
+"regression. Available methods are: no attribute selection, attribute "
+"selection using M5's method (step through the attributes removing the one "
+"with the smallest standardised coefficient until no improvement is observed "
+"in the estimate of the error given by the Akaike "
+"information criterion), and a greedy selection using the Akaike information "
+"metric.";
}
/**
* Sets the method used to select attributes for use in the
* linear regression.
*
* @param method the attribute selection method to use.
*/
public void setAttributeSelectionMethod(SelectedTag method) {
if (method.getTags() == TAGS_SELECTION) {
m_AttributeSelection = method.getSelectedTag().getID();
}
}
/**
* Gets the method used to select attributes for use in the
* linear regression.
*
* @return the method to use.
*/
public SelectedTag getAttributeSelectionMethod() {
return new SelectedTag(m_AttributeSelection, TAGS_SELECTION);
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String debugTipText() {
return "Outputs debug information to the console.";
}
/**
* Controls whether debugging output will be printed
*
* @param debug true if debugging output should be printed
*/
public void setDebug(boolean debug) {
b_Debug = debug;
}
/**
* Controls whether debugging output will be printed
*
* @return true if debugging output is printed
*/
public boolean getDebug() {
return b_Debug;
}
/**
* Removes the attribute with the highest standardised coefficient
* greater than 1.5 from the selected attributes.
*
* @param selectedAttributes an array of flags indicating which
* attributes are included in the regression model
* @param coefficients an array of coefficients for the regression
* model
* @return true if an attribute was removed
*/
private boolean deselectColinearAttributes(boolean [] selectedAttributes,
double [] coefficients) {
double maxSC = 1.5;
int maxAttr = -1, coeff = 0;
for (int i = 0; i < selectedAttributes.length; i++) {
if (selectedAttributes[i]) {
double SC = Math.abs(coefficients[coeff] * m_StdDevs[i]
/ m_ClassStdDev);
if (SC > maxSC) {
maxSC = SC;
maxAttr = i;
}
coeff++;
}
}
if (maxAttr >= 0) {
selectedAttributes[maxAttr] = false;
if (b_Debug) {
System.out.println("Deselected colinear attribute:" + (maxAttr + 1)
+ " with standardised coefficient: " + maxSC);
}
return true;
}
return false;
}
/**
* Performs a greedy search for the best regression model using
* Akaike's criterion.
*
* @throws Exception if regression can't be done
*/
private void findBestModel() throws Exception {
// For the weighted case we still use numInstances in
// the calculation of the Akaike criterion.
int numInstances = m_TransformedData.numInstances();
if (b_Debug) {
System.out.println((new Instances(m_TransformedData, 0)).toString());
}
// Perform a regression for the full model, and remove colinear attributes
do {
m_Coefficients = doRegression(m_SelectedAttributes);
} while (m_EliminateColinearAttributes &&
deselectColinearAttributes(m_SelectedAttributes, m_Coefficients));
// Figure out current number of attributes + 1. (We treat this model
// as the full model for the Akaike-based methods.)
int numAttributes = 1;
for (int i = 0; i < m_SelectedAttributes.length; i++) {
if (m_SelectedAttributes[i]) {
numAttributes++;
}
}
double fullMSE = calculateSE(m_SelectedAttributes, m_Coefficients);
double akaike = (numInstances - numAttributes) + 2 * numAttributes;
if (b_Debug) {
System.out.println("Initial Akaike value: " + akaike);
}
boolean improved;
int currentNumAttributes = numAttributes;
switch (m_AttributeSelection) {
case SELECTION_GREEDY:
// Greedy attribute removal
do {
boolean [] currentSelected = (boolean []) m_SelectedAttributes.clone();
improved = false;
currentNumAttributes--;
for (int i = 0; i < m_SelectedAttributes.length; i++) {
if (currentSelected[i]) {
// Calculate the akaike rating without this attribute
currentSelected[i] = false;
double [] currentCoeffs = doRegression(currentSelected);
double currentMSE = calculateSE(currentSelected, currentCoeffs);
double currentAkaike = currentMSE / fullMSE
* (numInstances - numAttributes)
+ 2 * currentNumAttributes;
if (b_Debug) {
System.out.println("(akaike: " + currentAkaike);
}
// If it is better than the current best
if (currentAkaike < akaike) {
if (b_Debug) {
System.err.println("Removing attribute " + (i + 1)
+ " improved Akaike: " + currentAkaike);
}
improved = true;
akaike = currentAkaike;
System.arraycopy(currentSelected, 0,
m_SelectedAttributes, 0,
m_SelectedAttributes.length);
m_Coefficients = currentCoeffs;
}
currentSelected[i] = true;
}
}
} while (improved);
break;
case SELECTION_M5:
// Step through the attributes removing the one with the smallest
// standardised coefficient until no improvement in Akaike
do {
improved = false;
currentNumAttributes--;
// Find attribute with smallest SC
double minSC = 0;
int minAttr = -1, coeff = 0;
for (int i = 0; i < m_SelectedAttributes.length; i++) {
if (m_SelectedAttributes[i]) {
double SC = Math.abs(m_Coefficients[coeff] * m_StdDevs[i]
/ m_ClassStdDev);
if ((coeff == 0) || (SC < minSC)) {
minSC = SC;
minAttr = i;
}
coeff++;
}
}
// See whether removing it improves the Akaike score
if (minAttr >= 0) {
m_SelectedAttributes[minAttr] = false;
double [] currentCoeffs = doRegression(m_SelectedAttributes);
double currentMSE = calculateSE(m_SelectedAttributes, currentCoeffs);
double currentAkaike = currentMSE / fullMSE
* (numInstances - numAttributes)
+ 2 * currentNumAttributes;
if (b_Debug) {
System.out.println("(akaike: " + currentAkaike);
}
// If it is better than the current best
if (currentAkaike < akaike) {
if (b_Debug) {
System.err.println("Removing attribute " + (minAttr + 1)
+ " improved Akaike: " + currentAkaike);
}
improved = true;
akaike = currentAkaike;
m_Coefficients = currentCoeffs;
} else {
m_SelectedAttributes[minAttr] = true;
}
}
} while (improved);
break;
case SELECTION_NONE:
break;
}
}
/**
* Calculate the squared error of a regression model on the
* training data
*
* @param selectedAttributes an array of flags indicating which
* attributes are included in the regression model
* @param coefficients an array of coefficients for the regression
* model
* @return the mean squared error on the training data
* @throws Exception if there is a missing class value in the training
* data
*/
private double calculateSE(boolean [] selectedAttributes,
double [] coefficients) throws Exception {
double mse = 0;
for (int i = 0; i < m_TransformedData.numInstances(); i++) {
double prediction = regressionPrediction(m_TransformedData.instance(i),
selectedAttributes,
coefficients);
double error = prediction - m_TransformedData.instance(i).classValue();
mse += error * error;
}
return mse;
}
/**
* Calculate the dependent value for a given instance for a
* given regression model.
*
* @param transformedInstance the input instance
* @param selectedAttributes an array of flags indicating which
* attributes are included in the regression model
* @param coefficients an array of coefficients for the regression
* model
* @return the regression value for the instance.
* @throws Exception if the class attribute of the input instance
* is not assigned
*/
private double regressionPrediction(Instance transformedInstance,
boolean [] selectedAttributes,
double [] coefficients)
throws Exception {
double result = 0;
int column = 0;
for (int j = 0; j < transformedInstance.numAttributes(); j++) {
if ((m_ClassIndex != j)
&& (selectedAttributes[j])) {
result += coefficients[column] * transformedInstance.value(j);
column++;
}
}
result += coefficients[column];
return result;
}
/**
* Calculate a linear regression using the selected attributes
*
* @param selectedAttributes an array of booleans where each element
* is true if the corresponding attribute should be included in the
* regression.
* @return an array of coefficients for the linear regression model.
* @throws Exception if an error occurred during the regression.
*/
private double [] doRegression(boolean [] selectedAttributes)
throws Exception {
if (b_Debug) {
System.out.print("doRegression(");
for (int i = 0; i < selectedAttributes.length; i++) {
System.out.print(" " + selectedAttributes[i]);
}
System.out.println(" )");
}
int numAttributes = 0;
for (int i = 0; i < selectedAttributes.length; i++) {
if (selectedAttributes[i]) {
numAttributes++;
}
}
// Check whether there are still attributes left
Matrix independent = null, dependent = null;
if (numAttributes > 0) {
independent = new Matrix(m_TransformedData.numInstances(),
numAttributes);
dependent = new Matrix(m_TransformedData.numInstances(), 1);
for (int i = 0; i < m_TransformedData.numInstances(); i ++) {
Instance inst = m_TransformedData.instance(i);
double sqrt_weight = Math.sqrt(inst.weight());
int column = 0;
for (int j = 0; j < m_TransformedData.numAttributes(); j++) {
if (j == m_ClassIndex) {
dependent.set(i, 0, inst.classValue() * sqrt_weight);
} else {
if (selectedAttributes[j]) {
double value = inst.value(j) - m_Means[j];
// We only need to do this if we want to
// scale the input
if (!m_checksTurnedOff) {
value /= m_StdDevs[j];
}
independent.set(i, column, value * sqrt_weight);
column++;
}
}
}
}
}
// Compute coefficients (note that we have to treat the
// intercept separately so that it doesn't get affected
// by the ridge constant.)
double[] coefficients = new double[numAttributes + 1];
if (numAttributes > 0) {
double[] coeffsWithoutIntercept =
independent.regression(dependent, m_Ridge).getCoefficients();
System.arraycopy(coeffsWithoutIntercept, 0, coefficients, 0,
numAttributes);
}
coefficients[numAttributes] = m_ClassMean;
// Convert coefficients into original scale
int column = 0;
for(int i = 0; i < m_TransformedData.numAttributes(); i++) {
if ((i != m_TransformedData.classIndex()) &&
(selectedAttributes[i])) {
// We only need to do this if we have scaled the
// input.
if (!m_checksTurnedOff) {
coefficients[column] /= m_StdDevs[i];
}
// We have centred the input
coefficients[coefficients.length - 1] -=
coefficients[column] * m_Means[i];
column++;
}
}
return coefficients;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 9770 $");
}
/**
* Generates a linear regression function predictor.
*
* @param argv the options
*/
public static void main(String argv[]) {
runClassifier(new LinearRegression(), argv);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy