All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.LinearRegression Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    LinearRegression.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions;

import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.matrix.Matrix;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Class for using linear regression for prediction. Uses the Akaike criterion for model selection, and is able to deal with weighted instances.
 * 

* * Valid options are:

* *

 -D
 *  Produce debugging output.
 *  (default no debugging output)
* *
 -S <number of selection method>
 *  Set the attribute selection method to use. 1 = None, 2 = Greedy.
 *  (default 0 = M5' method)
* *
 -C
 *  Do not try to eliminate colinear attributes.
 * 
* *
 -R <double>
 *  Set ridge parameter (default 1.0e-8).
 * 
* * * @author Eibe Frank ([email protected]) * @author Len Trigg ([email protected]) * @version $Revision: 9770 $ */ public class LinearRegression extends Classifier implements OptionHandler, WeightedInstancesHandler { /** for serialization */ static final long serialVersionUID = -3364580862046573747L; /** Array for storing coefficients of linear regression. */ private double[] m_Coefficients; /** Which attributes are relevant? */ private boolean[] m_SelectedAttributes; /** Variable for storing transformed training data. */ private Instances m_TransformedData; /** The filter for removing missing values. */ private ReplaceMissingValues m_MissingFilter; /** The filter storing the transformation from nominal to binary attributes. */ private NominalToBinary m_TransformFilter; /** The standard deviations of the class attribute */ private double m_ClassStdDev; /** The mean of the class attribute */ private double m_ClassMean; /** The index of the class attribute */ private int m_ClassIndex; /** The attributes means */ private double[] m_Means; /** The attribute standard deviations */ private double[] m_StdDevs; /** True if debug output will be printed */ private boolean b_Debug; /** The current attribute selection method */ private int m_AttributeSelection; /** Attribute selection method: M5 method */ public static final int SELECTION_M5 = 0; /** Attribute selection method: No attribute selection */ public static final int SELECTION_NONE = 1; /** Attribute selection method: Greedy method */ public static final int SELECTION_GREEDY = 2; /** Attribute selection methods */ public static final Tag [] TAGS_SELECTION = { new Tag(SELECTION_NONE, "No attribute selection"), new Tag(SELECTION_M5, "M5 method"), new Tag(SELECTION_GREEDY, "Greedy method") }; /** Try to eliminate correlated attributes? */ private boolean m_EliminateColinearAttributes = true; /** Turn off all checks and conversions? */ private boolean m_checksTurnedOff = false; /** The ridge parameter */ private double m_Ridge = 1.0e-8; /** * Turns off checks for missing values, etc. Use with caution. * Also turns off scaling. */ public void turnChecksOff() { m_checksTurnedOff = true; } /** * Turns on checks for missing values, etc. Also turns * on scaling. */ public void turnChecksOn() { m_checksTurnedOff = false; } /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for using linear regression for prediction. Uses the Akaike " +"criterion for model selection, and is able to deal with weighted " +"instances."; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Builds a regression model for the given data. * * @param data the training data to be used for generating the * linear regression function * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { if (!m_checksTurnedOff) { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); } // Preprocess instances if (!m_checksTurnedOff) { m_TransformFilter = new NominalToBinary(); m_TransformFilter.setInputFormat(data); data = Filter.useFilter(data, m_TransformFilter); m_MissingFilter = new ReplaceMissingValues(); m_MissingFilter.setInputFormat(data); data = Filter.useFilter(data, m_MissingFilter); data.deleteWithMissingClass(); } else { m_TransformFilter = null; m_MissingFilter = null; } m_ClassIndex = data.classIndex(); m_TransformedData = data; // Turn all attributes on for a start m_SelectedAttributes = new boolean[data.numAttributes()]; for (int i = 0; i < data.numAttributes(); i++) { if (i != m_ClassIndex) { m_SelectedAttributes[i] = true; } } m_Coefficients = null; // Compute means and standard deviations m_Means = new double[data.numAttributes()]; m_StdDevs = new double[data.numAttributes()]; for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex()) { m_Means[j] = data.meanOrMode(j); m_StdDevs[j] = Math.sqrt(data.variance(j)); if (m_StdDevs[j] == 0) { m_SelectedAttributes[j] = false; } } } m_ClassStdDev = Math.sqrt(data.variance(m_TransformedData.classIndex())); m_ClassMean = data.meanOrMode(m_TransformedData.classIndex()); // Perform the regression findBestModel(); // Save memory m_TransformedData = new Instances(data, 0); } /** * Classifies the given instance using the linear regression function. * * @param instance the test instance * @return the classification * @throws Exception if classification can't be done successfully */ public double classifyInstance(Instance instance) throws Exception { // Transform the input instance Instance transformedInstance = instance; if (!m_checksTurnedOff) { m_TransformFilter.input(transformedInstance); m_TransformFilter.batchFinished(); transformedInstance = m_TransformFilter.output(); m_MissingFilter.input(transformedInstance); m_MissingFilter.batchFinished(); transformedInstance = m_MissingFilter.output(); } // Calculate the dependent variable from the regression model return regressionPrediction(transformedInstance, m_SelectedAttributes, m_Coefficients); } /** * Outputs the linear regression model as a string. * * @return the model as string */ public String toString() { if (m_TransformedData == null) { return "Linear Regression: No model built yet."; } try { StringBuffer text = new StringBuffer(); int column = 0; boolean first = true; text.append("\nLinear Regression Model\n\n"); text.append(m_TransformedData.classAttribute().name()+" =\n\n"); for (int i = 0; i < m_TransformedData.numAttributes(); i++) { if ((i != m_ClassIndex) && (m_SelectedAttributes[i])) { if (!first) text.append(" +\n"); else first = false; text.append(Utils.doubleToString(m_Coefficients[column], 12, 4) + " * "); text.append(m_TransformedData.attribute(i).name()); column++; } } text.append(" +\n" + Utils.doubleToString(m_Coefficients[column], 12, 4)); return text.toString(); } catch (Exception e) { return "Can't print Linear Regression!"; } } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement(new Option("\tProduce debugging output.\n" + "\t(default no debugging output)", "D", 0, "-D")); newVector.addElement(new Option("\tSet the attribute selection method" + " to use. 1 = None, 2 = Greedy.\n" + "\t(default 0 = M5' method)", "S", 1, "-S ")); newVector.addElement(new Option("\tDo not try to eliminate colinear" + " attributes.\n", "C", 0, "-C")); newVector.addElement(new Option("\tSet ridge parameter (default 1.0e-8).\n", "R", 1, "-R ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D
   *  Produce debugging output.
   *  (default no debugging output)
* *
 -S <number of selection method>
   *  Set the attribute selection method to use. 1 = None, 2 = Greedy.
   *  (default 0 = M5' method)
* *
 -C
   *  Do not try to eliminate colinear attributes.
   * 
* *
 -R <double>
   *  Set ridge parameter (default 1.0e-8).
   * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String selectionString = Utils.getOption('S', options); if (selectionString.length() != 0) { setAttributeSelectionMethod(new SelectedTag(Integer .parseInt(selectionString), TAGS_SELECTION)); } else { setAttributeSelectionMethod(new SelectedTag(SELECTION_M5, TAGS_SELECTION)); } String ridgeString = Utils.getOption('R', options); if (ridgeString.length() != 0) { setRidge(new Double(ridgeString).doubleValue()); } else { setRidge(1.0e-8); } setDebug(Utils.getFlag('D', options)); setEliminateColinearAttributes(!Utils.getFlag('C', options)); } /** * Returns the coefficients for this linear model. * * @return the coefficients for this linear model */ public double[] coefficients() { double[] coefficients = new double[m_SelectedAttributes.length + 1]; int counter = 0; for (int i = 0; i < m_SelectedAttributes.length; i++) { if ((m_SelectedAttributes[i]) && ((i != m_ClassIndex))) { coefficients[i] = m_Coefficients[counter++]; } } coefficients[m_SelectedAttributes.length] = m_Coefficients[counter]; return coefficients; } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [6]; int current = 0; options[current++] = "-S"; options[current++] = "" + getAttributeSelectionMethod() .getSelectedTag().getID(); if (getDebug()) { options[current++] = "-D"; } if (!getEliminateColinearAttributes()) { options[current++] = "-C"; } options[current++] = "-R"; options[current++] = "" + getRidge(); while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String ridgeTipText() { return "The value of the Ridge parameter."; } /** * Get the value of Ridge. * * @return Value of Ridge. */ public double getRidge() { return m_Ridge; } /** * Set the value of Ridge. * * @param newRidge Value to assign to Ridge. */ public void setRidge(double newRidge) { m_Ridge = newRidge; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String eliminateColinearAttributesTipText() { return "Eliminate colinear attributes."; } /** * Get the value of EliminateColinearAttributes. * * @return Value of EliminateColinearAttributes. */ public boolean getEliminateColinearAttributes() { return m_EliminateColinearAttributes; } /** * Set the value of EliminateColinearAttributes. * * @param newEliminateColinearAttributes Value to assign to EliminateColinearAttributes. */ public void setEliminateColinearAttributes(boolean newEliminateColinearAttributes) { m_EliminateColinearAttributes = newEliminateColinearAttributes; } /** * Get the number of coefficients used in the model * * @return the number of coefficients */ public int numParameters() { return m_Coefficients.length-1; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String attributeSelectionMethodTipText() { return "Set the method used to select attributes for use in the linear " +"regression. Available methods are: no attribute selection, attribute " +"selection using M5's method (step through the attributes removing the one " +"with the smallest standardised coefficient until no improvement is observed " +"in the estimate of the error given by the Akaike " +"information criterion), and a greedy selection using the Akaike information " +"metric."; } /** * Sets the method used to select attributes for use in the * linear regression. * * @param method the attribute selection method to use. */ public void setAttributeSelectionMethod(SelectedTag method) { if (method.getTags() == TAGS_SELECTION) { m_AttributeSelection = method.getSelectedTag().getID(); } } /** * Gets the method used to select attributes for use in the * linear regression. * * @return the method to use. */ public SelectedTag getAttributeSelectionMethod() { return new SelectedTag(m_AttributeSelection, TAGS_SELECTION); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String debugTipText() { return "Outputs debug information to the console."; } /** * Controls whether debugging output will be printed * * @param debug true if debugging output should be printed */ public void setDebug(boolean debug) { b_Debug = debug; } /** * Controls whether debugging output will be printed * * @return true if debugging output is printed */ public boolean getDebug() { return b_Debug; } /** * Removes the attribute with the highest standardised coefficient * greater than 1.5 from the selected attributes. * * @param selectedAttributes an array of flags indicating which * attributes are included in the regression model * @param coefficients an array of coefficients for the regression * model * @return true if an attribute was removed */ private boolean deselectColinearAttributes(boolean [] selectedAttributes, double [] coefficients) { double maxSC = 1.5; int maxAttr = -1, coeff = 0; for (int i = 0; i < selectedAttributes.length; i++) { if (selectedAttributes[i]) { double SC = Math.abs(coefficients[coeff] * m_StdDevs[i] / m_ClassStdDev); if (SC > maxSC) { maxSC = SC; maxAttr = i; } coeff++; } } if (maxAttr >= 0) { selectedAttributes[maxAttr] = false; if (b_Debug) { System.out.println("Deselected colinear attribute:" + (maxAttr + 1) + " with standardised coefficient: " + maxSC); } return true; } return false; } /** * Performs a greedy search for the best regression model using * Akaike's criterion. * * @throws Exception if regression can't be done */ private void findBestModel() throws Exception { // For the weighted case we still use numInstances in // the calculation of the Akaike criterion. int numInstances = m_TransformedData.numInstances(); if (b_Debug) { System.out.println((new Instances(m_TransformedData, 0)).toString()); } // Perform a regression for the full model, and remove colinear attributes do { m_Coefficients = doRegression(m_SelectedAttributes); } while (m_EliminateColinearAttributes && deselectColinearAttributes(m_SelectedAttributes, m_Coefficients)); // Figure out current number of attributes + 1. (We treat this model // as the full model for the Akaike-based methods.) int numAttributes = 1; for (int i = 0; i < m_SelectedAttributes.length; i++) { if (m_SelectedAttributes[i]) { numAttributes++; } } double fullMSE = calculateSE(m_SelectedAttributes, m_Coefficients); double akaike = (numInstances - numAttributes) + 2 * numAttributes; if (b_Debug) { System.out.println("Initial Akaike value: " + akaike); } boolean improved; int currentNumAttributes = numAttributes; switch (m_AttributeSelection) { case SELECTION_GREEDY: // Greedy attribute removal do { boolean [] currentSelected = (boolean []) m_SelectedAttributes.clone(); improved = false; currentNumAttributes--; for (int i = 0; i < m_SelectedAttributes.length; i++) { if (currentSelected[i]) { // Calculate the akaike rating without this attribute currentSelected[i] = false; double [] currentCoeffs = doRegression(currentSelected); double currentMSE = calculateSE(currentSelected, currentCoeffs); double currentAkaike = currentMSE / fullMSE * (numInstances - numAttributes) + 2 * currentNumAttributes; if (b_Debug) { System.out.println("(akaike: " + currentAkaike); } // If it is better than the current best if (currentAkaike < akaike) { if (b_Debug) { System.err.println("Removing attribute " + (i + 1) + " improved Akaike: " + currentAkaike); } improved = true; akaike = currentAkaike; System.arraycopy(currentSelected, 0, m_SelectedAttributes, 0, m_SelectedAttributes.length); m_Coefficients = currentCoeffs; } currentSelected[i] = true; } } } while (improved); break; case SELECTION_M5: // Step through the attributes removing the one with the smallest // standardised coefficient until no improvement in Akaike do { improved = false; currentNumAttributes--; // Find attribute with smallest SC double minSC = 0; int minAttr = -1, coeff = 0; for (int i = 0; i < m_SelectedAttributes.length; i++) { if (m_SelectedAttributes[i]) { double SC = Math.abs(m_Coefficients[coeff] * m_StdDevs[i] / m_ClassStdDev); if ((coeff == 0) || (SC < minSC)) { minSC = SC; minAttr = i; } coeff++; } } // See whether removing it improves the Akaike score if (minAttr >= 0) { m_SelectedAttributes[minAttr] = false; double [] currentCoeffs = doRegression(m_SelectedAttributes); double currentMSE = calculateSE(m_SelectedAttributes, currentCoeffs); double currentAkaike = currentMSE / fullMSE * (numInstances - numAttributes) + 2 * currentNumAttributes; if (b_Debug) { System.out.println("(akaike: " + currentAkaike); } // If it is better than the current best if (currentAkaike < akaike) { if (b_Debug) { System.err.println("Removing attribute " + (minAttr + 1) + " improved Akaike: " + currentAkaike); } improved = true; akaike = currentAkaike; m_Coefficients = currentCoeffs; } else { m_SelectedAttributes[minAttr] = true; } } } while (improved); break; case SELECTION_NONE: break; } } /** * Calculate the squared error of a regression model on the * training data * * @param selectedAttributes an array of flags indicating which * attributes are included in the regression model * @param coefficients an array of coefficients for the regression * model * @return the mean squared error on the training data * @throws Exception if there is a missing class value in the training * data */ private double calculateSE(boolean [] selectedAttributes, double [] coefficients) throws Exception { double mse = 0; for (int i = 0; i < m_TransformedData.numInstances(); i++) { double prediction = regressionPrediction(m_TransformedData.instance(i), selectedAttributes, coefficients); double error = prediction - m_TransformedData.instance(i).classValue(); mse += error * error; } return mse; } /** * Calculate the dependent value for a given instance for a * given regression model. * * @param transformedInstance the input instance * @param selectedAttributes an array of flags indicating which * attributes are included in the regression model * @param coefficients an array of coefficients for the regression * model * @return the regression value for the instance. * @throws Exception if the class attribute of the input instance * is not assigned */ private double regressionPrediction(Instance transformedInstance, boolean [] selectedAttributes, double [] coefficients) throws Exception { double result = 0; int column = 0; for (int j = 0; j < transformedInstance.numAttributes(); j++) { if ((m_ClassIndex != j) && (selectedAttributes[j])) { result += coefficients[column] * transformedInstance.value(j); column++; } } result += coefficients[column]; return result; } /** * Calculate a linear regression using the selected attributes * * @param selectedAttributes an array of booleans where each element * is true if the corresponding attribute should be included in the * regression. * @return an array of coefficients for the linear regression model. * @throws Exception if an error occurred during the regression. */ private double [] doRegression(boolean [] selectedAttributes) throws Exception { if (b_Debug) { System.out.print("doRegression("); for (int i = 0; i < selectedAttributes.length; i++) { System.out.print(" " + selectedAttributes[i]); } System.out.println(" )"); } int numAttributes = 0; for (int i = 0; i < selectedAttributes.length; i++) { if (selectedAttributes[i]) { numAttributes++; } } // Check whether there are still attributes left Matrix independent = null, dependent = null; if (numAttributes > 0) { independent = new Matrix(m_TransformedData.numInstances(), numAttributes); dependent = new Matrix(m_TransformedData.numInstances(), 1); for (int i = 0; i < m_TransformedData.numInstances(); i ++) { Instance inst = m_TransformedData.instance(i); double sqrt_weight = Math.sqrt(inst.weight()); int column = 0; for (int j = 0; j < m_TransformedData.numAttributes(); j++) { if (j == m_ClassIndex) { dependent.set(i, 0, inst.classValue() * sqrt_weight); } else { if (selectedAttributes[j]) { double value = inst.value(j) - m_Means[j]; // We only need to do this if we want to // scale the input if (!m_checksTurnedOff) { value /= m_StdDevs[j]; } independent.set(i, column, value * sqrt_weight); column++; } } } } } // Compute coefficients (note that we have to treat the // intercept separately so that it doesn't get affected // by the ridge constant.) double[] coefficients = new double[numAttributes + 1]; if (numAttributes > 0) { double[] coeffsWithoutIntercept = independent.regression(dependent, m_Ridge).getCoefficients(); System.arraycopy(coeffsWithoutIntercept, 0, coefficients, 0, numAttributes); } coefficients[numAttributes] = m_ClassMean; // Convert coefficients into original scale int column = 0; for(int i = 0; i < m_TransformedData.numAttributes(); i++) { if ((i != m_TransformedData.classIndex()) && (selectedAttributes[i])) { // We only need to do this if we have scaled the // input. if (!m_checksTurnedOff) { coefficients[column] /= m_StdDevs[i]; } // We have centred the input coefficients[coefficients.length - 1] -= coefficients[column] * m_Means[i]; column++; } } return coefficients; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9770 $"); } /** * Generates a linear regression function predictor. * * @param argv the options */ public static void main(String argv[]) { runClassifier(new LinearRegression(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy