All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.PLSClassifier Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * PLSClassifier.java
 * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand
 */

package weka.classifiers.functions;

import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.supervised.attribute.PLSFilter;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * A wrapper classifier for the PLSFilter, utilizing the PLSFilter's ability to perform predictions.
 * 

* * Valid options are:

* *

 -filter <filter specification>
 *  The PLS filter to use. Full classname of filter to include,  followed by scheme options.
 *  (default: weka.filters.supervised.attribute.PLSFilter)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 
 * Options specific to filter weka.filters.supervised.attribute.PLSFilter ('-filter'):
 * 
* *
 -D
 *  Turns on output of debugging information.
* *
 -C <num>
 *  The number of components to compute.
 *  (default: 20)
* *
 -U
 *  Updates the class attribute as well.
 *  (default: off)
* *
 -M
 *  Turns replacing of missing values on.
 *  (default: off)
* *
 -A <SIMPLS|PLS1>
 *  The algorithm to use.
 *  (default: PLS1)
* *
 -P <none|center|standardize>
 *  The type of preprocessing that is applied to the data.
 *  (default: center)
* * * @author fracpete (fracpete at waikato dot ac dot nz) * @version $Revision: 1.4 $ */ public class PLSClassifier extends Classifier { /** for serialization */ private static final long serialVersionUID = 4819775160590973256L; /** the PLS filter */ protected PLSFilter m_Filter = new PLSFilter(); /** the actual filter to use */ protected PLSFilter m_ActualFilter = null; /** * Returns a string describing classifier * * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "A wrapper classifier for the PLSFilter, utilizing the PLSFilter's " + "ability to perform predictions."; } /** * Gets an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions(){ Vector result; Enumeration en; result = new Vector(); result.addElement(new Option( "\tThe PLS filter to use. Full classname of filter to include, " + "\tfollowed by scheme options.\n" + "\t(default: weka.filters.supervised.attribute.PLSFilter)", "filter", 1, "-filter ")); en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); if (getFilter() instanceof OptionHandler) { result.addElement(new Option( "", "", 0, "\nOptions specific to filter " + getFilter().getClass().getName() + " ('-filter'):")); en = ((OptionHandler) getFilter()).listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); } return result.elements(); } /** * returns the options of the current setup * * @return the current options */ public String[] getOptions(){ int i; Vector result; String[] options; result = new Vector(); result.add("-filter"); if (getFilter() instanceof OptionHandler) result.add( getFilter().getClass().getName() + " " + Utils.joinOptions(((OptionHandler) getFilter()).getOptions())); else result.add( getFilter().getClass().getName()); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Parses the options for this object.

* * Valid options are:

* *

 -filter <filter specification>
   *  The PLS filter to use. Full classname of filter to include,  followed by scheme options.
   *  (default: weka.filters.supervised.attribute.PLSFilter)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 
   * Options specific to filter weka.filters.supervised.attribute.PLSFilter ('-filter'):
   * 
* *
 -D
   *  Turns on output of debugging information.
* *
 -C <num>
   *  The number of components to compute.
   *  (default: 20)
* *
 -U
   *  Updates the class attribute as well.
   *  (default: off)
* *
 -M
   *  Turns replacing of missing values on.
   *  (default: off)
* *
 -A <SIMPLS|PLS1>
   *  The algorithm to use.
   *  (default: PLS1)
* *
 -P <none|center|standardize>
   *  The type of preprocessing that is applied to the data.
   *  (default: center)
* * * @param options the options to use * @throws Exception if setting of options fails */ public void setOptions(String[] options) throws Exception { String tmpStr; String[] tmpOptions; super.setOptions(options); tmpStr = Utils.getOption("filter", options); tmpOptions = Utils.splitOptions(tmpStr); if (tmpOptions.length != 0) { tmpStr = tmpOptions[0]; tmpOptions[0] = ""; setFilter((Filter) Utils.forName(Filter.class, tmpStr, tmpOptions)); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String filterTipText() { return "The PLS filter to be used (only used for setup)."; } /** * Set the PLS filter (only used for setup). * * @param value the kernel filter. * @throws Exception if not PLSFilter */ public void setFilter(Filter value) throws Exception { if (!(value instanceof PLSFilter)) throw new Exception("Filter has to be PLSFilter!"); else m_Filter = (PLSFilter) value; } /** * Get the PLS filter. * * @return the PLS filter */ public Filter getFilter() { return m_Filter; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = getFilter().getCapabilities(); // class result.enable(Capability.MISSING_CLASS_VALUES); // other result.setMinimumNumberInstances(1); return result; } /** * builds the classifier * * @param data the training instances * @throws Exception if something goes wrong */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); // initialize filter m_ActualFilter = (PLSFilter) Filter.makeCopy(m_Filter); m_ActualFilter.setPerformPrediction(false); m_ActualFilter.setInputFormat(data); Filter.useFilter(data, m_ActualFilter); m_ActualFilter.setPerformPrediction(true); } /** * Classifies the given test instance. The instance has to belong to a * dataset when it's being classified. * * @param instance the instance to be classified * @return the predicted most likely class for the instance or * Instance.missingValue() if no prediction is made * @throws Exception if an error occurred during the prediction */ public double classifyInstance(Instance instance) throws Exception { double result; Instance pred; m_ActualFilter.input(instance); m_ActualFilter.batchFinished(); pred = m_ActualFilter.output(); result = pred.classValue(); return result; } /** * returns a string representation of the classifier * * @return a string representation of the classifier */ public String toString() { String result; result = this.getClass().getName() + "\n" + this.getClass().getName().replaceAll(".", "=") + "\n\n"; result += "# Components..........: " + m_Filter.getNumComponents() + "\n"; result += "Algorithm.............: " + m_Filter.getAlgorithm().getSelectedTag().getReadable() + "\n"; result += "Replace missing values: " + (m_Filter.getReplaceMissing() ? "yes" : "no") + "\n"; result += "Preprocessing.........: " + m_Filter.getPreprocessing().getSelectedTag().getReadable() + "\n"; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } /** * Main method for running this classifier from commandline. * * @param args the options */ public static void main(String[] args) { runClassifier(new PLSClassifier(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy