All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.Winnow Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Winnow.java
 *    Copyright (C) 2002 J. Lindgren
 *
 */
package weka.classifiers.functions;

import weka.classifiers.Classifier;
import weka.classifiers.UpdateableClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 
 * Implements Winnow and Balanced Winnow algorithms by Littlestone.
*
* For more information, see
*
* N. Littlestone (1988). Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm. Machine Learning. 2:285-318.
*
* N. Littlestone (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. University of California, Santa Cruz.
*
* Does classification for problems with nominal attributes (which it converts into binary attributes). *

* * BibTeX: *

 * @article{Littlestone1988,
 *    author = {N. Littlestone},
 *    journal = {Machine Learning},
 *    pages = {285-318},
 *    title = {Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm},
 *    volume = {2},
 *    year = {1988}
 * }
 * 
 * @techreport{Littlestone1989,
 *    address = {University of California, Santa Cruz},
 *    author = {N. Littlestone},
 *    institution = {University of California},
 *    note = {Technical Report UCSC-CRL-89-11},
 *    title = {Mistake bounds and logarithmic linear-threshold learning algorithms},
 *    year = {1989}
 * }
 * 
*

* * Valid options are:

* *

 -L
 *  Use the baLanced version
 *  (default false)
* *
 -I <int>
 *  The number of iterations to be performed.
 *  (default 1)
* *
 -A <double>
 *  Promotion coefficient alpha.
 *  (default 2.0)
* *
 -B <double>
 *  Demotion coefficient beta.
 *  (default 0.5)
* *
 -H <double>
 *  Prediction threshold.
 *  (default -1.0 == number of attributes)
* *
 -W <double>
 *  Starting weights.
 *  (default 2.0)
* *
 -S <int>
 *  Default random seed.
 *  (default 1)
* * * @author J. Lindgren (jtlindgr at cs.helsinki.fi) * @version $Revision: 5523 $ */ public class Winnow extends Classifier implements UpdateableClassifier, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 3543770107994321324L; /** Use the balanced variant? **/ protected boolean m_Balanced; /** The number of iterations **/ protected int m_numIterations = 1; /** The promotion coefficient **/ protected double m_Alpha = 2.0; /** The demotion coefficient **/ protected double m_Beta = 0.5; /** Prediction threshold, <0 == numAttributes **/ protected double m_Threshold = -1.0; /** Random seed used for shuffling the dataset, -1 == disable **/ protected int m_Seed = 1; /** Accumulated mistake count (for statistics) **/ protected int m_Mistakes; /** Starting weights for the prediction vector(s) **/ protected double m_defaultWeight = 2.0; /** The weight vector for prediction (pos) */ private double[] m_predPosVector = null; /** The weight vector for prediction (neg) */ private double[] m_predNegVector = null; /** The true threshold used for prediction **/ private double m_actualThreshold; /** The training instances */ private Instances m_Train = null; /** The filter used to make attributes numeric. */ private NominalToBinary m_NominalToBinary; /** The filter used to get rid of missing values. */ private ReplaceMissingValues m_ReplaceMissingValues; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Implements Winnow and Balanced Winnow algorithms by " + "Littlestone.\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString() + "\n\n" + "Does classification for problems with nominal attributes " + "(which it converts into binary attributes)."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "N. Littlestone"); result.setValue(Field.YEAR, "1988"); result.setValue(Field.TITLE, "Learning quickly when irrelevant attributes are abound: A new linear threshold algorithm"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "2"); result.setValue(Field.PAGES, "285-318"); additional = result.add(Type.TECHREPORT); additional.setValue(Field.AUTHOR, "N. Littlestone"); additional.setValue(Field.YEAR, "1989"); additional.setValue(Field.TITLE, "Mistake bounds and logarithmic linear-threshold learning algorithms"); additional.setValue(Field.INSTITUTION, "University of California"); additional.setValue(Field.ADDRESS, "University of California, Santa Cruz"); additional.setValue(Field.NOTE, "Technical Report UCSC-CRL-89-11"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option("\tUse the baLanced version\n" + "\t(default false)", "L", 0, "-L")); newVector.addElement(new Option("\tThe number of iterations to be performed.\n" + "\t(default 1)", "I", 1, "-I ")); newVector.addElement(new Option("\tPromotion coefficient alpha.\n" + "\t(default 2.0)", "A", 1, "-A ")); newVector.addElement(new Option("\tDemotion coefficient beta.\n" + "\t(default 0.5)", "B", 1, "-B ")); newVector.addElement(new Option("\tPrediction threshold.\n" + "\t(default -1.0 == number of attributes)", "H", 1, "-H ")); newVector.addElement(new Option("\tStarting weights.\n" + "\t(default 2.0)", "W", 1, "-W ")); newVector.addElement(new Option("\tDefault random seed.\n" + "\t(default 1)", "S", 1, "-S ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -L
   *  Use the baLanced version
   *  (default false)
* *
 -I <int>
   *  The number of iterations to be performed.
   *  (default 1)
* *
 -A <double>
   *  Promotion coefficient alpha.
   *  (default 2.0)
* *
 -B <double>
   *  Demotion coefficient beta.
   *  (default 0.5)
* *
 -H <double>
   *  Prediction threshold.
   *  (default -1.0 == number of attributes)
* *
 -W <double>
   *  Starting weights.
   *  (default 2.0)
* *
 -S <int>
   *  Default random seed.
   *  (default 1)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { m_Balanced = Utils.getFlag('L', options); String iterationsString = Utils.getOption('I', options); if (iterationsString.length() != 0) { m_numIterations = Integer.parseInt(iterationsString); } String alphaString = Utils.getOption('A', options); if (alphaString.length() != 0) { m_Alpha = (new Double(alphaString)).doubleValue(); } String betaString = Utils.getOption('B', options); if (betaString.length() != 0) { m_Beta = (new Double(betaString)).doubleValue(); } String tString = Utils.getOption('H', options); if (tString.length() != 0) { m_Threshold = (new Double(tString)).doubleValue(); } String wString = Utils.getOption('W', options); if (wString.length() != 0) { m_defaultWeight = (new Double(wString)).doubleValue(); } String rString = Utils.getOption('S', options); if (rString.length() != 0) { m_Seed = Integer.parseInt(rString); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] options = new String [20]; int current = 0; if(m_Balanced) { options[current++] = "-L"; } options[current++] = "-I"; options[current++] = "" + m_numIterations; options[current++] = "-A"; options[current++] = "" + m_Alpha; options[current++] = "-B"; options[current++] = "" + m_Beta; options[current++] = "-H"; options[current++] = "" + m_Threshold; options[current++] = "-W"; options[current++] = "" + m_defaultWeight; options[current++] = "-S"; options[current++] = "" + m_Seed; while (current < options.length) { options[current++] = ""; } return options; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.BINARY_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Builds the classifier * * @param insts the data to train the classifier with * @throws Exception if something goes wrong during building */ public void buildClassifier(Instances insts) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(insts); // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); // Filter data m_Train = new Instances(insts); m_ReplaceMissingValues = new ReplaceMissingValues(); m_ReplaceMissingValues.setInputFormat(m_Train); m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues); m_NominalToBinary = new NominalToBinary(); m_NominalToBinary.setInputFormat(m_Train); m_Train = Filter.useFilter(m_Train, m_NominalToBinary); /** Randomize training data */ if(m_Seed != -1) { m_Train.randomize(new Random(m_Seed)); } /** Make space to store weights */ m_predPosVector = new double[m_Train.numAttributes()]; if(m_Balanced) { m_predNegVector = new double[m_Train.numAttributes()]; } /** Initialize the weights to starting values **/ for(int i = 0; i < m_Train.numAttributes(); i++) m_predPosVector[i] = m_defaultWeight; if(m_Balanced) { for(int i = 0; i < m_Train.numAttributes(); i++) { m_predNegVector[i] = m_defaultWeight; } } /** Set actual prediction threshold **/ if(m_Threshold<0) { m_actualThreshold = (double)m_Train.numAttributes()-1; } else { m_actualThreshold = m_Threshold; } m_Mistakes=0; /** Compute the weight vectors **/ if(m_Balanced) { for (int it = 0; it < m_numIterations; it++) { for (int i = 0; i < m_Train.numInstances(); i++) { actualUpdateClassifierBalanced(m_Train.instance(i)); } } } else { for (int it = 0; it < m_numIterations; it++) { for (int i = 0; i < m_Train.numInstances(); i++) { actualUpdateClassifier(m_Train.instance(i)); } } } } /** * Updates the classifier with a new learning example * * @param instance the instance to update the classifier with * @throws Exception if something goes wrong */ public void updateClassifier(Instance instance) throws Exception { m_ReplaceMissingValues.input(instance); m_ReplaceMissingValues.batchFinished(); Instance filtered = m_ReplaceMissingValues.output(); m_NominalToBinary.input(filtered); m_NominalToBinary.batchFinished(); filtered = m_NominalToBinary.output(); if(m_Balanced) { actualUpdateClassifierBalanced(filtered); } else { actualUpdateClassifier(filtered); } } /** * Actual update routine for prefiltered instances * * @param inst the instance to update the classifier with * @throws Exception if something goes wrong */ private void actualUpdateClassifier(Instance inst) throws Exception { double posmultiplier; if (!inst.classIsMissing()) { double prediction = makePrediction(inst); if (prediction != inst.classValue()) { m_Mistakes++; if(prediction == 0) { /* false neg: promote */ posmultiplier=m_Alpha; } else { /* false pos: demote */ posmultiplier=m_Beta; } int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); for(int l = 0 ; l < n1 ; l++) { if(inst.index(l) != classIndex && inst.valueSparse(l)==1) { m_predPosVector[inst.index(l)]*=posmultiplier; } } //Utils.normalize(m_predPosVector); } } else { System.out.println("CLASS MISSING"); } } /** * Actual update routine (balanced) for prefiltered instances * * @param inst the instance to update the classifier with * @throws Exception if something goes wrong */ private void actualUpdateClassifierBalanced(Instance inst) throws Exception { double posmultiplier,negmultiplier; if (!inst.classIsMissing()) { double prediction = makePredictionBalanced(inst); if (prediction != inst.classValue()) { m_Mistakes++; if(prediction == 0) { /* false neg: promote positive, demote negative*/ posmultiplier=m_Alpha; negmultiplier=m_Beta; } else { /* false pos: demote positive, promote negative */ posmultiplier=m_Beta; negmultiplier=m_Alpha; } int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); for(int l = 0 ; l < n1 ; l++) { if(inst.index(l) != classIndex && inst.valueSparse(l)==1) { m_predPosVector[inst.index(l)]*=posmultiplier; m_predNegVector[inst.index(l)]*=negmultiplier; } } //Utils.normalize(m_predPosVector); //Utils.normalize(m_predNegVector); } } else { System.out.println("CLASS MISSING"); } } /** * Outputs the prediction for the given instance. * * @param inst the instance for which prediction is to be computed * @return the prediction * @throws Exception if something goes wrong */ public double classifyInstance(Instance inst) throws Exception { m_ReplaceMissingValues.input(inst); m_ReplaceMissingValues.batchFinished(); Instance filtered = m_ReplaceMissingValues.output(); m_NominalToBinary.input(filtered); m_NominalToBinary.batchFinished(); filtered = m_NominalToBinary.output(); if(m_Balanced) { return(makePredictionBalanced(filtered)); } else { return(makePrediction(filtered)); } } /** * Compute the actual prediction for prefiltered instance * * @param inst the instance for which prediction is to be computed * @return the prediction * @throws Exception if something goes wrong */ private double makePrediction(Instance inst) throws Exception { double total = 0; int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); for(int i=0;i m_actualThreshold) { return(1); } else { return(0); } } /** * Compute our prediction (Balanced) for prefiltered instance * * @param inst the instance for which prediction is to be computed * @return the prediction * @throws Exception if something goes wrong */ private double makePredictionBalanced(Instance inst) throws Exception { double total=0; int n1 = inst.numValues(); int classIndex = m_Train.classIndex(); for(int i=0;i m_actualThreshold) { return(1); } else { return(0); } } /** * Returns textual description of the classifier. * * @return textual description of the classifier */ public String toString() { if(m_predPosVector==null) return("Winnow: No model built yet."); String result = "Winnow\n\nAttribute weights\n\n"; int classIndex = m_Train.classIndex(); if(!m_Balanced) { for( int i = 0 ; i < m_Train.numAttributes(); i++) { if(i!=classIndex) result += "w" + i + " " + m_predPosVector[i] + "\n"; } } else { for( int i = 0 ; i < m_Train.numAttributes(); i++) { if(i!=classIndex) { result += "w" + i + " p " + m_predPosVector[i]; result += " n " + m_predNegVector[i]; double wdiff=m_predPosVector[i]-m_predNegVector[i]; result += " d " + wdiff + "\n"; } } } result += "\nCumulated mistake count: " + m_Mistakes + "\n\n"; return(result); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String balancedTipText() { return "Whether to use the balanced version of the algorithm."; } /** * Get the value of Balanced. * * @return Value of Balanced. */ public boolean getBalanced() { return m_Balanced; } /** * Set the value of Balanced. * * @param b Value to assign to Balanced. */ public void setBalanced(boolean b) { m_Balanced = b; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String alphaTipText() { return "Promotion coefficient alpha."; } /** * Get the value of Alpha. * * @return Value of Alpha. */ public double getAlpha() { return(m_Alpha); } /** * Set the value of Alpha. * * @param a Value to assign to Alpha. */ public void setAlpha(double a) { m_Alpha = a; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String betaTipText() { return "Demotion coefficient beta."; } /** * Get the value of Beta. * * @return Value of Beta. */ public double getBeta() { return(m_Beta); } /** * Set the value of Beta. * * @param b Value to assign to Beta. */ public void setBeta(double b) { m_Beta = b; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String thresholdTipText() { return "Prediction threshold (-1 means: set to number of attributes)."; } /** * Get the value of Threshold. * * @return Value of Threshold. */ public double getThreshold() { return m_Threshold; } /** * Set the value of Threshold. * * @param t Value to assign to Threshold. */ public void setThreshold(double t) { m_Threshold = t; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String defaultWeightTipText() { return "Initial value of weights/coefficients."; } /** * Get the value of defaultWeight. * * @return Value of defaultWeight. */ public double getDefaultWeight() { return m_defaultWeight; } /** * Set the value of defaultWeight. * * @param w Value to assign to defaultWeight. */ public void setDefaultWeight(double w) { m_defaultWeight = w; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numIterationsTipText() { return "The number of iterations to be performed."; } /** * Get the value of numIterations. * * @return Value of numIterations. */ public int getNumIterations() { return m_numIterations; } /** * Set the value of numIterations. * * @param v Value to assign to numIterations. */ public void setNumIterations(int v) { m_numIterations = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "Random number seed used for data shuffling (-1 means no " + "randomization)."; } /** * Get the value of Seed. * * @return Value of Seed. */ public int getSeed() { return m_Seed; } /** * Set the value of Seed. * * @param v Value to assign to Seed. */ public void setSeed(int v) { m_Seed = v; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5523 $"); } /** * Main method. * * @param argv the commandline options */ public static void main(String[] argv) { runClassifier(new Winnow(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy