All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.pace.PaceMatrix Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or (at
 *    your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful, but
 *    WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *    General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

/*
 *    PaceMatrix.java
 *    Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions.pace;

import weka.core.RevisionUtils;
import weka.core.matrix.DoubleVector;
import weka.core.matrix.FlexibleDecimalFormat;
import weka.core.matrix.IntVector;
import weka.core.matrix.Matrix;
import weka.core.matrix.Maths;

import java.util.Random;
import java.text.DecimalFormat;

/**
 * Class for matrix manipulation used for pace regression. 

* * REFERENCES

* * Wang, Y. (2000). "A new approach to fitting linear models in high * dimensional spaces." PhD Thesis. Department of Computer Science, * University of Waikato, New Zealand.

* * Wang, Y. and Witten, I. H. (2002). "Modeling for optimal probability * prediction." Proceedings of ICML'2002. Sydney.

* * @author Yong Wang ([email protected]) * @version $Revision: 1.6 $ */ public class PaceMatrix extends Matrix { /** for serialization */ static final long serialVersionUID = 2699925616857843973L; /* ------------------------ Constructors * ------------------------ */ /** Construct an m-by-n PACE matrix of zeros. @param m Number of rows. @param n Number of colums. */ public PaceMatrix( int m, int n ) { super( m, n ); } /** Construct an m-by-n constant PACE matrix. @param m Number of rows. @param n Number of colums. @param s Fill the matrix with this scalar value. */ public PaceMatrix( int m, int n, double s ) { super( m, n, s ); } /** Construct a PACE matrix from a 2-D array. @param A Two-dimensional array of doubles. @throws IllegalArgumentException All rows must have the same length */ public PaceMatrix( double[][] A ) { super( A ); } /** Construct a PACE matrix quickly without checking arguments. @param A Two-dimensional array of doubles. @param m Number of rows. @param n Number of colums. */ public PaceMatrix( double[][] A, int m, int n ) { super( A, m, n ); } /** Construct a PaceMatrix from a one-dimensional packed array @param vals One-dimensional array of doubles, packed by columns (ala Fortran). @param m Number of rows. @throws IllegalArgumentException Array length must be a multiple of m. */ public PaceMatrix( double vals[], int m ) { super( vals, m ); } /** Construct a PaceMatrix with a single column from a DoubleVector @param v DoubleVector */ public PaceMatrix( DoubleVector v ) { this( v.size(), 1 ); setMatrix( 0, v.size()-1, 0, v ); } /** Construct a PaceMatrix from a Matrix @param X Matrix */ public PaceMatrix( Matrix X ) { super( X.getRowDimension(), X.getColumnDimension() ); A = X.getArray(); } /* ------------------------ Public Methods * ------------------------ */ /** Set the row dimenion of the matrix * @param rowDimension the row dimension */ public void setRowDimension( int rowDimension ) { m = rowDimension; } /** Set the column dimenion of the matrix * @param columnDimension the column dimension */ public void setColumnDimension( int columnDimension ) { n = columnDimension; } /** * Clone the PaceMatrix object. * * @return the clone */ public Object clone () { PaceMatrix X = new PaceMatrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j]; } } return (Object) X; } /** Add a value to an element and reset the element * @param i the row number of the element * @param j the column number of the element * @param s the double value to be added with */ public void setPlus(int i, int j, double s) { A[i][j] += s; } /** Multiply a value with an element and reset the element * @param i the row number of the element * @param j the column number of the element * @param s the double value to be multiplied with */ public void setTimes(int i, int j, double s) { A[i][j] *= s; } /** Set the submatrix A[i0:i1][j0:j1] with a same value * @param i0 the index of the first element of the column * @param i1 the index of the last element of the column * @param j0 the index of the first column * @param j1 the index of the last column * @param s the value to be set to */ public void setMatrix( int i0, int i1, int j0, int j1, double s ) { try { for( int i = i0; i <= i1; i++ ) { for( int j = j0; j <= j1; j++ ) { A[i][j] = s; } } } catch( ArrayIndexOutOfBoundsException e ) { throw new ArrayIndexOutOfBoundsException( "Index out of bounds" ); } } /** Set the submatrix A[i0:i1][j] with the values stored in a * DoubleVector * @param i0 the index of the first element of the column * @param i1 the index of the last element of the column * @param j the index of the column * @param v the vector that stores the values*/ public void setMatrix( int i0, int i1, int j, DoubleVector v ) { for( int i = i0; i <= i1; i++ ) { A[i][j] = v.get(i-i0); } } /** Set the whole matrix from a 1-D array * @param v 1-D array of doubles * @param columnFirst Whether to fill the column first or the row. * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix ( double[] v, boolean columnFirst ) { try { if( v.length != m * n ) throw new IllegalArgumentException("sizes not match."); int i, j, count = 0; if( columnFirst ) { for( i = 0; i < m; i++ ) { for( j = 0; j < n; j++ ) { A[i][j] = v[count]; count ++; } } } else { for( j = 0; j < n; j++ ) { for( i = 0; i < m; i++ ){ A[i][j] = v[count]; count ++; } } } } catch( ArrayIndexOutOfBoundsException e ) { throw new ArrayIndexOutOfBoundsException( "Submatrix indices" ); } } /** Returns the maximum absolute value of all elements @return the maximum value */ public double maxAbs () { double ma = Math.abs(A[0][0]); for (int j = 0; j < n; j++) { for (int i = 0; i < m; i++) { ma = Math.max(ma, Math.abs(A[i][j])); } } return ma; } /** Returns the maximum absolute value of some elements of a column, that is, the elements of A[i0:i1][j]. @param i0 the index of the first element of the column @param i1 the index of the last element of the column @param j the index of the column @return the maximum value */ public double maxAbs ( int i0, int i1, int j ) { double m = Math.abs(A[i0][j]); for (int i = i0+1; i <= i1; i++) { m = Math.max(m, Math.abs(A[i][j])); } return m; } /** Returns the minimum absolute value of some elements of a column, that is, the elements of A[i0:i1][j]. @param i0 the index of the first element of the column @param i1 the index of the last element of the column @param column the index of the column @return the minimum value */ public double minAbs ( int i0, int i1, int column ) { double m = Math.abs(A[i0][column]); for (int i = i0+1; i <= i1; i++) { m = Math.min(m, Math.abs(A[i][column])); } return m; } /** Check if the matrix is empty * @return true if the matrix is empty */ public boolean isEmpty(){ if(m == 0 || n == 0) return true; if(A == null) return true; return false; } /** Return a DoubleVector that stores a column of the matrix * @param j the index of the column * @return the column */ public DoubleVector getColumn( int j ) { DoubleVector v = new DoubleVector( m ); double [] a = v.getArray(); for(int i = 0; i < m; i++) a[i] = A[i][j]; return v; } /** Return a DoubleVector that stores some elements of a column of the * matrix * @param i0 the index of the first element of the column * @param i1 the index of the last element of the column * @param j the index of the column * @return the DoubleVector */ public DoubleVector getColumn( int i0, int i1, int j ) { DoubleVector v = new DoubleVector( i1-i0+1 ); double [] a = v.getArray(); int count = 0; for( int i = i0; i <= i1; i++ ) { a[count] = A[i][j]; count++; } return v; } /** Multiplication between a row (or part of a row) of the first matrix * and a column (or part or a column) of the second matrix. * @param i the index of the row in the first matrix * @param j0 the index of the first column in the first matrix * @param j1 the index of the last column in the first matrix * @param B the second matrix * @param l the index of the column in the second matrix * @return the result of the multiplication */ public double times( int i, int j0, int j1, PaceMatrix B, int l ) { double s = 0.0; for(int j = j0; j <= j1; j++ ) { s += A[i][j] * B.A[j][l]; } return s; } /** Decimal format for converting a matrix into a string * @return the default decimal format */ protected DecimalFormat [] format() { return format(0, m-1, 0, n-1, 7, false ); } /** Decimal format for converting a matrix into a string * @param digits the number of digits * @return the decimal format */ protected DecimalFormat [] format( int digits ) { return format(0, m-1, 0, n-1, digits, false); } /** Decimal format for converting a matrix into a string * @param digits the number of digits * @param trailing * @return the decimal format */ protected DecimalFormat [] format( int digits, boolean trailing ) { return format(0, m-1, 0, n-1, digits, trailing); } /** Decimal format for converting a matrix into a string * @param i0 * @param i1 * @param j * @param digits the number of digits * @param trailing * @return the decimal format */ protected DecimalFormat format(int i0, int i1, int j, int digits, boolean trailing) { FlexibleDecimalFormat df = new FlexibleDecimalFormat(digits, trailing); df.grouping( true ); for(int i = i0; i <= i1; i ++ ) df.update( A[i][j] ); return df; } /** Decimal format for converting a matrix into a string * @param i0 * @param i1 * @param j0 * @param j1 * @param trailing * @param digits the number of digits * @return the decimal format */ protected DecimalFormat [] format(int i0, int i1, int j0, int j1, int digits, boolean trailing) { DecimalFormat [] f = new DecimalFormat[j1-j0+1]; for( int j = j0; j <= j1; j++ ) { f[j] = format(i0, i1, j, digits, trailing); } return f; } /** * Converts matrix to string * * @return the matrix as string */ public String toString() { return toString( 5, false ); } /** * Converts matrix to string * * @param digits number of digits after decimal point * @param trailing true if trailing zeros are padded * @return the matrix as string */ public String toString( int digits, boolean trailing ) { if( isEmpty() ) return "null matrix"; StringBuffer text = new StringBuffer(); DecimalFormat [] nf = format( digits, trailing ); int numCols = 0; int count = 0; int width = 80; int lenNumber; int [] nCols = new int[n]; int nk=0; for( int j = 0; j < n; j++ ) { lenNumber = nf[j].format( A[0][j]).length(); if( count + 1 + lenNumber > width -1 ) { nCols[nk++] = numCols; count = 0; numCols = 0; } count += 1 + lenNumber; ++numCols; } nCols[nk] = numCols; nk = 0; for( int k = 0; k < n; ) { for( int i = 0; i < m; i++ ) { for( int j = k; j < k + nCols[nk]; j++) text.append( " " + nf[j].format( A[i][j]) ); text.append("\n"); } k += nCols[nk]; ++nk; text.append("\n"); } return text.toString(); } /** Squared sum of a column or row in a matrix * @param j the index of the column or row * @param i0 the index of the first element * @param i1 the index of the last element * @param col if true, sum over a column; otherwise, over a row * @return the squared sum */ public double sum2( int j, int i0, int i1, boolean col ) { double s2 = 0; if( col ) { // column for( int i = i0; i <= i1; i++ ) s2 += A[i][j] * A[i][j]; } else { for( int i = i0; i <= i1; i++ ) s2 += A[j][i] * A[j][i]; } return s2; } /** Squared sum of columns or rows of a matrix * @param col if true, sum over columns; otherwise, over rows * @return the squared sum */ public double[] sum2( boolean col ) { int l = col ? n : m; int p = col ? m : n; double [] s2 = new double[l]; for( int i = 0; i < l; i++ ) s2[i] = sum2( i, 0, p-1, col ); return s2; } /** Constructs single Householder transformation for a column * @param j the index of the column @param k the index of the row @return d and q */ public double [] h1( int j, int k ) { double dq[] = new double[2]; double s2 = sum2(j, k, m-1, true); dq[0] = A[k][j] >= 0 ? - Math.sqrt( s2 ) : Math.sqrt( s2 ); A[k][j] -= dq[0]; dq[1] = A[k][j] * dq[0]; return dq; } /** Performs single Householder transformation on one column of a matrix * @param j the index of the column @param k the index of the row @param q q = - u'u/2; must be negative @param b the matrix to be transformed @param l the column of the matrix b */ public void h2( int j, int k, double q, PaceMatrix b, int l ) { double s = 0, alpha; for( int i = k; i < m; i++ ) s += A[i][j] * b.A[i][l]; alpha = s / q; for( int i = k; i < m; i++ ) b.A[i][l] += alpha * A[i][j]; } /** Constructs the Givens rotation * @param a * @param b * @return a double array that stores the cosine and sine values */ public double [] g1( double a, double b ) { double cs[] = new double[2]; double r = Maths.hypot(a, b); if( r == 0.0 ) { cs[0] = 1; cs[1] = 0; } else { cs[0] = a / r; cs[1] = b / r; } return cs; } /** Performs the Givens rotation * @param cs a array storing the cosine and sine values * @param i0 the index of the row of the first element * @param i1 the index of the row of the second element * @param j the index of the column */ public void g2( double cs[], int i0, int i1, int j ){ double w = cs[0] * A[i0][j] + cs[1] * A[i1][j]; A[i1][j] = - cs[1] * A[i0][j] + cs[0] * A[i1][j]; A[i0][j] = w; } /** Forward ordering of columns in terms of response explanation. On * input, matrices A and b are already QR-transformed. The indices of * transformed columns are stored in the pivoting vector. * *@param b the PaceMatrix b *@param pvt the pivoting vector *@param k0 the first k0 columns (in pvt) of A are not to be changed **/ public void forward( PaceMatrix b, IntVector pvt, int k0 ) { for( int j = k0; j < Math.min(pvt.size(), m); j++ ) { steplsqr( b, pvt, j, mostExplainingColumn(b, pvt, j), true ); } } /** Returns the index of the column that has the largest (squared) * response, when each of columns pvt[ks:] is moved to become the * ks-th column. On input, A and b are both QR-transformed. * * @param b response * @param pvt pivoting index of A * @param ks columns pvt[ks:] of A are to be tested * @return the index of the column */ public int mostExplainingColumn( PaceMatrix b, IntVector pvt, int ks ) { double val; int [] p = pvt.getArray(); double ma = columnResponseExplanation( b, pvt, ks, ks ); int jma = ks; for( int i = ks+1; i < pvt.size(); i++ ) { val = columnResponseExplanation( b, pvt, i, ks ); if( val > ma ) { ma = val; jma = i; } } return jma; } /** Backward ordering of columns in terms of response explanation. On * input, matrices A and b are already QR-transformed. The indices of * transformed columns are stored in the pivoting vector. * * A and b must have the same number of rows, being the (pseudo-)rank. * * @param b PaceMatrix b * @param pvt pivoting vector * @param ks number of QR-transformed columns; psuedo-rank of A * @param k0 first k0 columns in pvt[] are not to be ordered. */ public void backward( PaceMatrix b, IntVector pvt, int ks, int k0 ) { for( int j = ks; j > k0; j-- ) { steplsqr( b, pvt, j, leastExplainingColumn(b, pvt, j, k0), false ); } } /** Returns the index of the column that has the smallest (squared) * response, when the column is moved to become the (ks-1)-th * column. On input, A and b are both QR-transformed. * * @param b response * @param pvt pivoting index of A * @param ks psudo-rank of A * @param k0 A[][pvt[0:(k0-1)]] are excluded from the testing. * @return the index of the column */ public int leastExplainingColumn( PaceMatrix b, IntVector pvt, int ks, int k0 ) { double val; int [] p = pvt.getArray(); double mi = columnResponseExplanation( b, pvt, ks-1, ks ); int jmi = ks-1; for( int i = k0; i < ks - 1; i++ ) { val = columnResponseExplanation( b, pvt, i, ks ); if( val <= mi ) { mi = val; jmi = i; } } return jmi; } /** Returns the squared ks-th response value if the j-th column becomes * the ks-th after orthogonal transformation. A[][pvt[ks:j]] (or * A[][pvt[j:ks]], if ks > j) and b[] are already QR-transformed * on input and will remain unchanged on output. * * More generally, it returns the inner product of the corresponding * row vector of the response PaceMatrix. (To be implemented.) * *@param b PaceMatrix b *@param pvt pivoting vector *@param j the column A[pvt[j]][] is to be moved *@param ks the target column A[pvt[ks]][] *@return the squared response value */ public double columnResponseExplanation( PaceMatrix b, IntVector pvt, int j, int ks ) { /* Implementation: * * If j == ks - 1, returns the squared ks-th response directly. * * If j > ks -1, returns the ks-th response after * Householder-transforming the j-th column and the response. * * If j < ks - 1, returns the ks-th response after a sequence of * Givens rotations starting from the j-th row. */ int k, l; double [] xxx = new double[n]; int [] p = pvt.getArray(); double val; if( j == ks -1 ) val = b.A[j][0]; else if( j > ks - 1 ) { int jm = Math.min(n-1, j); DoubleVector u = getColumn(ks,jm,p[j]); DoubleVector v = b.getColumn(ks,jm,0); val = v.innerProduct(u) / u.norm2(); } else { // ks > j for( k = j+1; k < ks; k++ ) // make a copy of A[j][] xxx[k] = A[j][p[k]]; val = b.A[j][0]; double [] cs; for( k = j+1; k < ks; k++ ) { cs = g1( xxx[k], A[k][p[k]] ); for( l = k+1; l < ks; l++ ) xxx[l] = - cs[1] * xxx[l] + cs[0] * A[k][p[l]]; val = - cs[1] * val + cs[0] * b.A[k][0]; } } return val * val; // or inner product in later implementation??? } /** * QR transformation for a least squares problem
* A x = b
* implicitly both A and b are transformed. pvt.size() is the psuedo-rank of * A. * * @param b PaceMatrix b * @param pvt pivoting vector * @param k0 the first k0 columns of A (indexed by pvt) are pre-chosen. * (But subject to rank examination.) * * For example, the constant term may be reserved, in which * case k0 = 1. **/ public void lsqr( PaceMatrix b, IntVector pvt, int k0 ) { final double TINY = 1e-15; int [] p = pvt.getArray(); int ks = 0; // psuedo-rank for(int j = 0; j < k0; j++ ) // k0 pre-chosen columns if( sum2(p[j],ks,m-1,true) > TINY ){ // large diagonal element steplsqr(b, pvt, ks, j, true); ks++; } else { // collinear column pvt.shiftToEnd( j ); pvt.setSize(pvt.size()-1); k0--; j--; } // initial QR transformation for(int j = k0; j < Math.min( pvt.size(), m ); j++ ) { if( sum2(p[j], ks, m-1, true) > TINY ) { steplsqr(b, pvt, ks, j, true); ks++; } else { // collinear column pvt.shiftToEnd( j ); pvt.setSize(pvt.size()-1); j--; } } b.m = m = ks; // reset number of rows pvt.setSize( ks ); } /** QR transformation for a least squares problem
* A x = b
* implicitly both A and b are transformed. pvt.size() is the psuedo-rank of A. * * @param b PaceMatrix b * @param pvt pivoting vector * @param k0 the first k0 columns of A (indexed by pvt) are pre-chosen. * (But subject to rank examination.) * * For example, the constant term may be reserved, in which * case k0 = 1. **/ public void lsqrSelection( PaceMatrix b, IntVector pvt, int k0 ) { int numObs = m; // number of instances int numXs = pvt.size(); lsqr( b, pvt, k0 ); if( numXs > 200 || numXs > numObs ) { // too many columns. forward(b, pvt, k0); } backward(b, pvt, pvt.size(), k0); } /** * Sets all diagonal elements to be positive (or nonnegative) without * changing the least squares solution * @param Y the response * @param pvt the pivoted column index */ public void positiveDiagonal( PaceMatrix Y, IntVector pvt ) { int [] p = pvt.getArray(); for( int i = 0; i < pvt.size(); i++ ) { if( A[i][p[i]] < 0.0 ) { for( int j = i; j < pvt.size(); j++ ) A[i][p[j]] = - A[i][p[j]]; Y.A[i][0] = - Y.A[i][0]; } } } /** Stepwise least squares QR-decomposition of the problem * A x = b @param b PaceMatrix b @param pvt pivoting vector @param ks number of transformed columns @param j pvt[j], the column to adjoin or delete @param adjoin to adjoin if true; otherwise, to delete */ public void steplsqr( PaceMatrix b, IntVector pvt, int ks, int j, boolean adjoin ) { final int kp = pvt.size(); // number of columns under consideration int [] p = pvt.getArray(); if( adjoin ) { // adjoining int pj = p[j]; pvt.swap( ks, j ); double dq[] = h1( pj, ks ); int pk; for( int k = ks+1; k < kp; k++ ){ pk = p[k]; h2( pj, ks, dq[1], this, pk); } h2( pj, ks, dq[1], b, 0 ); // for matrix. ??? A[ks][pj] = dq[0]; for( int k = ks+1; k < m; k++ ) A[k][pj] = 0; } else { // removing int pj = p[j]; for( int i = j; i < ks-1; i++ ) p[i] = p[i+1]; p[ks-1] = pj; double [] cs; for( int i = j; i < ks-1; i++ ){ cs = g1( A[i][p[i]], A[i+1][p[i]] ); for( int l = i; l < kp; l++ ) g2( cs, i, i+1, p[l] ); for( int l = 0; l < b.n; l++ ) b.g2( cs, i, i+1, l ); } } } /** Solves upper-triangular equation
* R x = b
* On output, the solution is stored in b * @param b the response * @param pvt the pivoting vector * @param kp the number of the first columns involved */ public void rsolve( PaceMatrix b, IntVector pvt, int kp) { if(kp == 0) b.m = 0; int i, j, k; int [] p = pvt.getArray(); double s; double [][] ba = b.getArray(); for( k = 0; k < b.n; k++ ) { ba[kp-1][k] /= A[kp-1][p[kp-1]]; for( i = kp - 2; i >= 0; i-- ){ s = 0; for( j = i + 1; j < kp; j++ ) s += A[i][p[j]] * ba[j][k]; ba[i][k] -= s; ba[i][k] /= A[i][p[i]]; } } b.m = kp; } /** Returns a new matrix which binds two matrices together with rows. * @param b the second matrix * @return the combined matrix */ public PaceMatrix rbind( PaceMatrix b ){ if( n != b.n ) throw new IllegalArgumentException("unequal numbers of rows."); PaceMatrix c = new PaceMatrix( m + b.m, n ); c.setMatrix( 0, m - 1, 0, n - 1, this ); c.setMatrix( m, m + b.m - 1, 0, n - 1, b ); return c; } /** Returns a new matrix which binds two matrices with columns. * @param b the second matrix * @return the combined matrix */ public PaceMatrix cbind( PaceMatrix b ) { if( m != b.m ) throw new IllegalArgumentException("unequal numbers of rows: " + m + " and " + b.m); PaceMatrix c = new PaceMatrix(m, n + b.n); c.setMatrix( 0, m - 1, 0, n - 1, this ); c.setMatrix( 0, m - 1, n, n + b.n - 1, b ); return c; } /** Solves the nonnegative linear squares problem. That is,

*

min || A x - b||, subject to x >= 0.

* * For algorithm, refer to P161, Chapter 23 of C. L. Lawson and * R. J. Hanson (1974). "Solving Least Squares * Problems". Prentice-Hall. * @param b the response * @param pvt vector storing pivoting column indices * @return solution */ public DoubleVector nnls( PaceMatrix b, IntVector pvt ) { int j, t, counter = 0, jm = -1, n = pvt.size(); double ma, max, alpha, wj; int [] p = pvt.getArray(); DoubleVector x = new DoubleVector( n ); double [] xA = x.getArray(); PaceMatrix z = new PaceMatrix(n, 1); PaceMatrix bt; // step 1 int kp = 0; // #variables in the positive set P while ( true ) { // step 2 if( ++counter > 3*n ) // should never happen throw new RuntimeException("Does not converge"); t = -1; max = 0.0; bt = new PaceMatrix( b.transpose() ); for( j = kp; j <= n-1; j++ ) { // W = A' (b - A x) wj = bt.times( 0, kp, m-1, this, p[j] ); if( wj > max ) { // step 4 max = wj; t = j; } } // step 3 if ( t == -1) break; // optimum achieved // step 5 pvt.swap( kp, t ); // move variable from set Z to set P kp++; xA[kp-1] = 0; steplsqr( b, pvt, kp-1, kp-1, true ); // step 6 ma = 0; while ( ma < 1.5 ) { for( j = 0; j <= kp-1; j++ ) z.A[j][0] = b.A[j][0]; rsolve(z, pvt, kp); ma = 2; jm = -1; for( j = 0; j <= kp-1; j++ ) { // step 7, 8 and 9 if( z.A[j][0] <= 0.0 ) { // alpha always between 0 and 1 alpha = xA[j] / ( xA[j] - z.A[j][0] ); if( alpha < ma ) { ma = alpha; jm = j; } } } if( ma > 1.5 ) for( j = 0; j <= kp-1; j++ ) xA[j] = z.A[j][0]; // step 7 else { for( j = kp-1; j >= 0; j-- ) { // step 10 // Modified to avoid round-off error (which seemingly // can cause infinite loop). if( j == jm ) { // step 11 xA[j] = 0.0; steplsqr( b, pvt, kp, j, false ); kp--; // move variable from set P to set Z } else xA[j] += ma * ( z.A[j][0] - xA[j] ); } } } } x.setSize(kp); pvt.setSize(kp); return x; } /** Solves the nonnegative least squares problem with equality * constraint. That is,

*

min ||A x - b||, subject to x >= 0 and c x = d.

* * @param b the response * @param c coeficients of equality constraints * @param d constants of equality constraints * @param pvt vector storing pivoting column indices * @return the solution */ public DoubleVector nnlse( PaceMatrix b, PaceMatrix c, PaceMatrix d, IntVector pvt ) { double eps = 1e-10 * Math.max( c.maxAbs(), d.maxAbs() ) / Math.max( maxAbs(), b.maxAbs() ); PaceMatrix e = c.rbind( new PaceMatrix( times(eps) ) ); PaceMatrix f = d.rbind( new PaceMatrix( b.times(eps) ) ); return e.nnls( f, pvt ); } /** Solves the nonnegative least squares problem with equality * constraint. That is,

*

min ||A x - b||, subject to x >= 0 and || x || = 1.
*

* @param b the response * @param pvt vector storing pivoting column indices * @return the solution */ public DoubleVector nnlse1( PaceMatrix b, IntVector pvt ) { PaceMatrix c = new PaceMatrix( 1, n, 1 ); PaceMatrix d = new PaceMatrix( 1, b.n, 1 ); return nnlse(b, c, d, pvt); } /** Generate matrix with standard-normally distributed random elements @param m Number of rows. @param n Number of colums. @return An m-by-n matrix with random elements. */ public static Matrix randomNormal( int m, int n ) { Random random = new Random(); Matrix A = new Matrix(m,n); double[][] X = A.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { X[i][j] = random.nextGaussian(); } } return A; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.6 $"); } /** * for testing only * * @param args the commandline arguments - ignored */ public static void main( String args[] ) { System.out.println("================================================" + "==========="); System.out.println("To test the pace estimators of linear model\n" + "coefficients.\n"); double sd = 2; // standard deviation of the random error term int n = 200; // total number of observations double beta0 = 100; // intercept int k1 = 20; // number of coefficients of the first cluster double beta1 = 0; // coefficient value of the first cluster int k2 = 20; // number of coefficients of the second cluster double beta2 = 5; // coefficient value of the second cluster int k = 1 + k1 + k2; DoubleVector beta = new DoubleVector( 1 + k1 + k2 ); beta.set( 0, beta0 ); beta.set( 1, k1, beta1 ); beta.set( k1+1, k1+k2, beta2 ); System.out.println("The data set contains " + n + " observations plus " + (k1 + k2) + " variables.\n\nThe coefficients of the true model" + " are:\n\n" + beta ); System.out.println("\nThe standard deviation of the error term is " + sd ); System.out.println("===============================================" + "============"); PaceMatrix X = new PaceMatrix( n, k1+k2+1 ); X.setMatrix( 0, n-1, 0, 0, 1 ); X.setMatrix( 0, n-1, 1, k1+k2, random(n, k1+k2) ); PaceMatrix Y = new PaceMatrix( X.times( new PaceMatrix(beta) ). plusEquals( randomNormal(n,1).times(sd) ) ); IntVector pvt = (IntVector) IntVector.seq(0, k1+k2); /*System.out.println( "The OLS estimate (by jama.Matrix.solve()) is:\n\n" + (new PaceMatrix(X.solve(Y))).getColumn(0) );*/ X.lsqrSelection( Y, pvt, 1 ); X.positiveDiagonal( Y, pvt ); PaceMatrix sol = (PaceMatrix) Y.clone(); X.rsolve( sol, pvt, pvt.size() ); DoubleVector betaHat = sol.getColumn(0).unpivoting( pvt, k ); System.out.println( "\nThe OLS estimate (through lsqr()) is: \n\n" + betaHat ); System.out.println( "\nQuadratic loss of the OLS estimate (||X b - X bHat||^2) = " + ( new PaceMatrix( X.times( new PaceMatrix(beta.minus(betaHat)) ))) .getColumn(0).sum2() ); System.out.println("=============================================" + "=============="); System.out.println(" *** Pace estimation *** \n"); DoubleVector r = Y.getColumn( pvt.size(), n-1, 0); double sde = Math.sqrt(r.sum2() / r.size()); System.out.println( "Estimated standard deviation = " + sde ); DoubleVector aHat = Y.getColumn( 0, pvt.size()-1, 0).times( 1./sde ); System.out.println("\naHat = \n" + aHat ); System.out.println("\n========= Based on chi-square mixture ============"); ChisqMixture d2 = new ChisqMixture(); int method = MixtureDistribution.NNMMethod; DoubleVector AHat = aHat.square(); d2.fit( AHat, method ); System.out.println( "\nEstimated mixing distribution is:\n" + d2 ); DoubleVector ATilde = d2.pace2( AHat ); DoubleVector aTilde = ATilde.sqrt().times(aHat.sign()); PaceMatrix YTilde = new PaceMatrix((new PaceMatrix(aTilde)).times( sde )); X.rsolve( YTilde, pvt, pvt.size() ); DoubleVector betaTilde = YTilde.getColumn(0).unpivoting( pvt, k ); System.out.println( "\nThe pace2 estimate of coefficients = \n" + betaTilde ); System.out.println( "Quadratic loss = " + ( new PaceMatrix( X.times( new PaceMatrix(beta.minus(betaTilde)) ))) .getColumn(0).sum2() ); ATilde = d2.pace4( AHat ); aTilde = ATilde.sqrt().times(aHat.sign()); YTilde = new PaceMatrix((new PaceMatrix(aTilde)).times( sde )); X.rsolve( YTilde, pvt, pvt.size() ); betaTilde = YTilde.getColumn(0).unpivoting( pvt, k ); System.out.println( "\nThe pace4 estimate of coefficients = \n" + betaTilde ); System.out.println( "Quadratic loss = " + ( new PaceMatrix( X.times( new PaceMatrix(beta.minus(betaTilde)) ))) .getColumn(0).sum2() ); ATilde = d2.pace6( AHat ); aTilde = ATilde.sqrt().times(aHat.sign()); YTilde = new PaceMatrix((new PaceMatrix(aTilde)).times( sde )); X.rsolve( YTilde, pvt, pvt.size() ); betaTilde = YTilde.getColumn(0).unpivoting( pvt, k ); System.out.println( "\nThe pace6 estimate of coefficients = \n" + betaTilde ); System.out.println( "Quadratic loss = " + ( new PaceMatrix( X.times( new PaceMatrix(beta.minus(betaTilde)) ))) .getColumn(0).sum2() ); System.out.println("\n========= Based on normal mixture ============"); NormalMixture d = new NormalMixture(); d.fit( aHat, method ); System.out.println( "\nEstimated mixing distribution is:\n" + d ); aTilde = d.nestedEstimate( aHat ); YTilde = new PaceMatrix((new PaceMatrix(aTilde)).times( sde )); X.rsolve( YTilde, pvt, pvt.size() ); betaTilde = YTilde.getColumn(0).unpivoting( pvt, k ); System.out.println( "The nested estimate of coefficients = \n" + betaTilde ); System.out.println( "Quadratic loss = " + ( new PaceMatrix( X.times( new PaceMatrix(beta.minus(betaTilde)) ))) .getColumn(0).sum2() ); aTilde = d.subsetEstimate( aHat ); YTilde = new PaceMatrix((new PaceMatrix(aTilde)).times( sde )); X.rsolve( YTilde, pvt, pvt.size() ); betaTilde = YTilde.getColumn(0).unpivoting( pvt, k ); System.out.println( "\nThe subset estimate of coefficients = \n" + betaTilde ); System.out.println( "Quadratic loss = " + ( new PaceMatrix( X.times( new PaceMatrix(beta.minus(betaTilde)) ))) .getColumn(0).sum2() ); aTilde = d.empiricalBayesEstimate( aHat ); YTilde = new PaceMatrix((new PaceMatrix(aTilde)).times( sde )); X.rsolve( YTilde, pvt, pvt.size() ); betaTilde = YTilde.getColumn(0).unpivoting( pvt, k ); System.out.println( "\nThe empirical Bayes estimate of coefficients = \n"+ betaTilde ); System.out.println( "Quadratic loss = " + ( new PaceMatrix( X.times( new PaceMatrix(beta.minus(betaTilde)) ))) .getColumn(0).sum2() ); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy