weka.classifiers.functions.supportVector.PolyKernel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* PolyKernel.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.functions.supportVector;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import java.util.Enumeration;
import java.util.Vector;
/**
* The polynomial kernel : K(x, y) = <x, y>^p or K(x, y) = (<x, y>+1)^p
*
*
* Valid options are:
*
* -D
* Enables debugging output (if available) to be printed.
* (default: off)
*
* -no-checks
* Turns off all checks - use with caution!
* (default: checks on)
*
* -C <num>
* The size of the cache (a prime number), 0 for full cache and
* -1 to turn it off.
* (default: 250007)
*
* -E <num>
* The Exponent to use.
* (default: 1.0)
*
* -L
* Use lower-order terms.
* (default: no)
*
*
* @author Eibe Frank ([email protected])
* @author Shane Legg ([email protected]) (sparse vector code)
* @author Stuart Inglis ([email protected]) (sparse vector code)
* @version $Revision: 9993 $
*/
public class PolyKernel
extends CachedKernel {
/** for serialization */
static final long serialVersionUID = -321831645846363201L;
/** Use lower-order terms? */
protected boolean m_lowerOrder = false;
/** The exponent for the polynomial kernel. */
protected double m_exponent = 1.0;
/**
* default constructor - does nothing.
*/
public PolyKernel() {
super();
}
/**
* Frees the cache used by the kernel.
*/
public void clean() {
if (getExponent() == 1.0) {
m_data = null;
}
super.clean();
}
/**
* Creates a new PolyKernel
instance.
*
* @param data the training dataset used.
* @param cacheSize the size of the cache (a prime number)
* @param exponent the exponent to use
* @param lowerOrder whether to use lower-order terms
* @throws Exception if something goes wrong
*/
public PolyKernel(Instances data, int cacheSize, double exponent,
boolean lowerOrder) throws Exception {
super();
setCacheSize(cacheSize);
setExponent(exponent);
setUseLowerOrder(lowerOrder);
buildKernel(data);
}
/**
* Returns a string describing the kernel
*
* @return a description suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return
"The polynomial kernel : K(x, y) = ^p or K(x, y) = (+1)^p";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector result;
Enumeration en;
result = new Vector();
en = super.listOptions();
while (en.hasMoreElements())
result.addElement(en.nextElement());
result.addElement(new Option(
"\tThe Exponent to use.\n"
+ "\t(default: 1.0)",
"E", 1, "-E "));
result.addElement(new Option(
"\tUse lower-order terms.\n"
+ "\t(default: no)",
"L", 0, "-L"));
return result.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -D
* Enables debugging output (if available) to be printed.
* (default: off)
*
* -no-checks
* Turns off all checks - use with caution!
* (default: checks on)
*
* -C <num>
* The size of the cache (a prime number), 0 for full cache and
* -1 to turn it off.
* (default: 250007)
*
* -E <num>
* The Exponent to use.
* (default: 1.0)
*
* -L
* Use lower-order terms.
* (default: no)
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String tmpStr;
tmpStr = Utils.getOption('E', options);
if (tmpStr.length() != 0)
setExponent(Double.parseDouble(tmpStr));
else
setExponent(1.0);
setUseLowerOrder(Utils.getFlag('L', options));
super.setOptions(options);
}
/**
* Gets the current settings of the Kernel.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
int i;
Vector result;
String[] options;
result = new Vector();
options = super.getOptions();
for (i = 0; i < options.length; i++)
result.add(options[i]);
result.add("-E");
result.add("" + getExponent());
if (getUseLowerOrder())
result.add("-L");
return (String[]) result.toArray(new String[result.size()]);
}
/**
*
* @param id1 the index of instance 1
* @param id2 the index of instance 2
* @param inst1 the instance 1 object
* @return the dot product
* @throws Exception if something goes wrong
*/
protected double evaluate(int id1, int id2, Instance inst1)
throws Exception {
double result;
if (id1 == id2) {
result = dotProd(inst1, inst1);
} else {
result = dotProd(inst1, m_data.instance(id2));
}
// Use lower order terms?
if (m_lowerOrder) {
result += 1.0;
}
if (m_exponent != 1.0) {
result = Math.pow(result, m_exponent);
}
return result;
}
/**
* Returns the Capabilities of this kernel.
*
* @return the capabilities of this object
* @see Capabilities
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enableAllClasses();
result.enable(Capability.MISSING_CLASS_VALUES);
return result;
}
/**
* Sets the exponent value.
*
* @param value the exponent value
*/
public void setExponent(double value) {
m_exponent = value;
}
/**
* Gets the exponent value.
*
* @return the exponent value
*/
public double getExponent() {
return m_exponent;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String exponentTipText() {
return "The exponent value.";
}
/**
* Sets whether to use lower-order terms.
*
* @param value true if lower-order terms will be used
*/
public void setUseLowerOrder(boolean value) {
m_lowerOrder = value;
}
/**
* Gets whether lower-order terms are used.
*
* @return true if lower-order terms are used
*/
public boolean getUseLowerOrder() {
return m_lowerOrder;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String useLowerOrderTipText() {
return "Whether to use lower-order terms.";
}
/**
* returns a string representation for the Kernel
*
* @return a string representaiton of the kernel
*/
public String toString() {
String result;
if (getExponent() == 1.0) {
if (getUseLowerOrder())
result = "Linear Kernel with lower order: K(x,y) = + 1";
else
result = "Linear Kernel: K(x,y) = ";
}
else {
if (getUseLowerOrder())
result = "Poly Kernel with lower order: K(x,y) = ( + 1)^" + getExponent();
else
result = "Poly Kernel: K(x,y) = ^" + getExponent();
}
return result;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 9993 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy