All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.Puk Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Puk.java
 *    Copyright (C) 2007 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions.supportVector;

import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * The Pearson VII function-based universal kernel.
*
* For more information see:
*
* B. Uestuen, W.J. Melssen, L.M.C. Buydens (2006). Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel. Chemometrics and Intelligent Laboratory Systems. 81:29-40. *

* * Valid options are:

* *

 -D
 *  Enables debugging output (if available) to be printed.
 *  (default: off)
* *
 -no-checks
 *  Turns off all checks - use with caution!
 *  (default: checks on)
* *
 -C <num>
 *  The size of the cache (a prime number), 0 for full cache and 
 *  -1 to turn it off.
 *  (default: 250007)
* *
 -O <num>
 *  The Omega parameter.
 *  (default: 1.0)
* *
 -S <num>
 *  The Sigma parameter.
 *  (default: 1.0)
* * * @author Bernhard Pfahringer ([email protected]) * @version $Revision: 5518 $ */ public class Puk extends CachedKernel implements TechnicalInformationHandler { /** for serialization */ private static final long serialVersionUID = 1682161522559978851L; /** The precalculated dotproducts of <inst_i,inst_i> */ protected double m_kernelPrecalc[]; /** Omega for the Puk kernel. */ protected double m_omega = 1.0; /** Sigma for the Puk kernel. */ protected double m_sigma = 1.0; /** Cached factor for the Puk kernel. */ protected double m_factor = 1.0; /** * default constructor - does nothing. */ public Puk() { super(); } /** * Constructor. Initializes m_kernelPrecalc[]. * * @param data the data to use * @param cacheSize the size of the cache * @param omega the exponent * @param sigma the bandwidth * @throws Exception if something goes wrong */ public Puk(Instances data, int cacheSize, double omega, double sigma) throws Exception { super(); setCacheSize(cacheSize); setOmega(omega); setSigma(sigma); buildKernel(data); } /** * Returns a string describing the kernel * * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "The Pearson VII function-based universal kernel.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "B. Uestuen and W.J. Melssen and L.M.C. Buydens"); result.setValue(Field.YEAR, "2006"); result.setValue(Field.TITLE, "Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel"); result.setValue(Field.JOURNAL, "Chemometrics and Intelligent Laboratory Systems"); result.setValue(Field.VOLUME, "81"); result.setValue(Field.PAGES, "29-40"); result.setValue(Field.PDF, "http://www.cac.science.ru.nl/research/publications/PDFs/ustun2006.pdf"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result; Enumeration en; result = new Vector(); en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); result.addElement(new Option( "\tThe Omega parameter.\n" + "\t(default: 1.0)", "O", 1, "-O ")); result.addElement(new Option( "\tThe Sigma parameter.\n" + "\t(default: 1.0)", "S", 1, "-S ")); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D
   *  Enables debugging output (if available) to be printed.
   *  (default: off)
* *
 -no-checks
   *  Turns off all checks - use with caution!
   *  (default: checks on)
* *
 -C <num>
   *  The size of the cache (a prime number), 0 for full cache and 
   *  -1 to turn it off.
   *  (default: 250007)
* *
 -O <num>
   *  The Omega parameter.
   *  (default: 1.0)
* *
 -S <num>
   *  The Sigma parameter.
   *  (default: 1.0)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('O', options); if (tmpStr.length() != 0) setOmega(Double.parseDouble(tmpStr)); else setOmega(1.0); tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) setSigma(Double.parseDouble(tmpStr)); else setSigma(1.0); super.setOptions(options); } /** * Gets the current settings of the Kernel. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { int i; Vector result; String[] options; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-O"); result.add("" + getOmega()); result.add("-S"); result.add("" + getSigma()); return (String[]) result.toArray(new String[result.size()]); } /** * returns the dot product * * @param id1 the index of instance 1 * @param id2 the index of instance 2 * @param inst1 the instance 1 object * @return the dot product * @throws Exception if something goes wrong */ protected double evaluate(int id1, int id2, Instance inst1) throws Exception { if (id1 == id2) { return 1.0; } else { double precalc1; if (id1 == -1) precalc1 = dotProd(inst1, inst1); else precalc1 = m_kernelPrecalc[id1]; Instance inst2 = m_data.instance(id2); double squaredDifference = -2.0 * dotProd(inst1, inst2) + precalc1 + m_kernelPrecalc[id2]; double intermediate = m_factor * Math.sqrt(squaredDifference); double result = 1.0 / Math.pow(1.0 + intermediate * intermediate, getOmega()); return result; } } /** * Sets the omega value. * * @param value the omega value */ public void setOmega(double value) { m_omega = value; m_factor = computeFactor(m_omega, m_sigma); } /** * Gets the omega value. * * @return the omega value */ public double getOmega() { return m_omega; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String omegaTipText() { return "The Omega value."; } /** * Sets the sigma value. * * @param value the sigma value */ public void setSigma(double value) { m_sigma = value; m_factor = computeFactor(m_omega, m_sigma); } /** * Gets the sigma value. * * @return the sigma value */ public double getSigma() { return m_sigma; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String sigmaTipText() { return "The Sigma value."; } /** * computes the factor for curve-fitting (see equation (13) in paper) * * @param omega the omega to use * @param sigma the sigma to use * @return the factor for curve-fitting */ protected double computeFactor(double omega, double sigma) { double root = Math.sqrt(Math.pow(2.0, 1.0 / omega) - 1); return 2.0 * root / sigma; } /** * initializes variables etc. * * @param data the data to use */ protected void initVars(Instances data) { super.initVars(data); m_factor = computeFactor(m_omega, m_sigma); m_kernelPrecalc = new double[data.numInstances()]; } /** * Returns the Capabilities of this kernel. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enableAllClasses(); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * builds the kernel with the given data. Initializes the kernel cache. * The actual size of the cache in bytes is (64 * cacheSize). * * @param data the data to base the kernel on * @throws Exception if something goes wrong */ public void buildKernel(Instances data) throws Exception { // does kernel handle the data? if (!getChecksTurnedOff()) getCapabilities().testWithFail(data); initVars(data); for (int i = 0; i < data.numInstances(); i++) m_kernelPrecalc[i] = dotProd(data.instance(i), data.instance(i)); } /** * returns a string representation for the Kernel * * @return a string representaiton of the kernel */ public String toString() { return "Puk kernel"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5518 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy