All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.StringKernel Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * StringKernel.java
 * 
 * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand
 */

package weka.classifiers.functions.supportVector;

import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Implementation of the subsequence kernel (SSK) as described in [1] and of the subsequence kernel with lambda pruning (SSK-LP) as described in [2].
*
* For more information, see
*
* Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, Christopher J. C. H. Watkins (2002). Text Classification using String Kernels. Journal of Machine Learning Research. 2:419-444.
*
* F. Kleedorfer, A. Seewald (2005). Implementation of a String Kernel for WEKA. Wien, Austria. *

* * BibTeX: *

 * @article{Lodhi2002,
 *    author = {Huma Lodhi and Craig Saunders and John Shawe-Taylor and Nello Cristianini and Christopher J. C. H. Watkins},
 *    journal = {Journal of Machine Learning Research},
 *    pages = {419-444},
 *    title = {Text Classification using String Kernels},
 *    volume = {2},
 *    year = {2002},
 *    HTTP = {http://www.jmlr.org/papers/v2/lodhi02a.html}
 * }
 * 
 * @techreport{Kleedorfer2005,
 *    address = {Wien, Austria},
 *    author = {F. Kleedorfer and A. Seewald},
 *    institution = {Oesterreichisches Forschungsinstitut fuer Artificial Intelligence},
 *    number = {TR-2005-13},
 *    title = {Implementation of a String Kernel for WEKA},
 *    year = {2005}
 * }
 * 
*

* * Valid options are:

* *

 -D
 *  Enables debugging output (if available) to be printed.
 *  (default: off)
* *
 -no-checks
 *  Turns off all checks - use with caution!
 *  (default: checks on)
* *
 -P <0|1>
 *  The pruning method to use:
 *  0 = No pruning
 *  1 = Lambda pruning
 *  (default: 0)
* *
 -C <num>
 *  The size of the cache (a prime number).
 *  (default: 250007)
* *
 -IC <num>
 *  The size of the internal cache (a prime number).
 *  (default: 200003)
* *
 -L <num>
 *  The lambda constant. Penalizes non-continuous subsequence
 *  matches. Must be in (0,1).
 *  (default: 0.5)
* *
 -ssl <num>
 *  The length of the subsequence.
 *  (default: 3)
* *
 -ssl-max <num>
 *  The maximum length of the subsequence.
 *  (default: 9)
* *
 -N
 *  Use normalization.
 *  (default: no)
* * *

Theory

*

Overview

* The algorithm computes a measure of similarity between two texts based on * the number and form of their common subsequences, which need not be * contiguous. This method can be parametrized by specifying the subsequence * length k, the penalty factor lambda, which penalizes non-contiguous matches, * and optional 'lambda pruning', which takes maxLambdaExponent, * m, as parameter. Lambda pruning causes very 'stretched' * substring matches not to be counted, thus speeding up the computation. The * functionality of SSK and SSK-LP is explained in the following using simple * examples. * *

Explanation & Examples

* for all of the following examples, we assume these parameter values: *
 
 *k=2
 *lambda=0.5
 *m=8 (for SSK-LP examples)
 *
* *

SSK

* *

Example 1

* *
 *SSK(2,"ab","axb")=0.5^5 = 0,03125
 *
* There is one subsequence of the length of 2 that both strings have in * common, "ab". The result of SSK is computed by raising lambda to the power * of L, where L is the length of the subsequence match in the one string plus * the length of the subsequence match in the other, in our case: *
 *   ab    axb
 *L= 2  +   3 = 5
 * 
* hence, the kernel yields 0.5^5 = 0,03125 * *

Example 2

*
 *SSK(2,"ab","abb")=0.5^5 + 0.5^4 = 0,09375
 *
* Here, we also have one subsequence of the length of 2 that both strings have * in common, "ab". The result of SSK is actually computed by summing over all * values computed for each occurrence of a common subsequence match. In this * example, there are two possible cases: *
 *ab    abb
 *--    --  L=4
 *--    - - L=5
 * 
* we have two matches, one of the length of 2+2=4, one of the length of 2+3=5, * so we get the result 0.5^5 + 0.5^4 = 0,09375. * *

SSK-LP

* Without lambda pruning, the string kernel finds *all* common subsequences of * the given length, whereas with lambda pruning, common subsequence matches * that are too much stretched in both strings are not taken into account. It * is argued that the value yielded for such a common subsequence is too low * (lambda ^(length[match_in_s] + length[match_in_t]) . Tests have * shown that a tremendous speedup can be achieved using this technique while * suffering from very little quality loss.
* Lambda pruning is parametrized by the maximum lambda exponent. It is a good * idea to choose that value to be about 3 or 4 times the subsequence length as * a rule of thumb. YMMV. * *

Example 3

* Without lambda pruning, one common subsequence, * "AB" would be found in the following two strings. (With k=2) *
 *SSK(2,"ab","axb")=0.5^14 = 0,00006103515625
 *
* lambda pruning allows for the control of the match length. So, if m * (the maximum lambda exponent) is e.g. 8, these two strings would * yield a kernel value of 0: *
 *with lambda pruning:    SSK-LP(2,8,"AxxxxxxxxxB","AyB")= 0
 *without lambda pruning: SSK(2,"AxxxxxxxxxB","AyB")= 0.5^14 = 0,00006103515625  
 *
* This is because the exponent for lambda (=the length of the subsequence * match) would be 14, which is > 8. In Contrast, the next result is * > 0 *
 *m=8
 *SSK-LP(2,8,"AxxB","AyyB")=0.5^8 = 0,00390625
 *
* because the lambda exponent would be 8, which is just accepted by lambda * pruning. * *

Normalization

* When the string kernel is used for its main purpose, as the kernel of a * support vector machine, it is not normalized. The normalized kernel can be * switched on by -F (feature space normalization) but is much slower. Like * most unnormalized kernels, K(x,x) is not a fixed value, see the next * example. * *

Example 4

*
 *SSK(2,"ab","ab")=0.5^4 = 0.0625
 *SSK(2,"AxxxxxxxxxB","AxxxxxxxxxB") = 12.761724710464478
 *
* SSK is evaluated twice, each time for two identical strings. A good measure * of similarity would produce the same value in both cases, which should * indicate the same level of similarity. The value of the normalized SSK would * be 1.0 in both cases. So for the purpose of computing string similarity the * normalized kernel should be used. For SVM the unnormalized kernel is usually * sufficient. * *

Complexity of SSK and SSK-LP

* The time complexity of this method (without lambda pruning and with an * infinitely large cache) is
*
O(k*|s|*|t|)
* Lambda Pruning has a complexity (without caching) of
*
O(m*binom(m,k)^2*(|s|+n)*|t|)

*
 *k...          subsequence length (ssl)
 *s,t...        strings
 *|s|...        length of string s
 *binom(x,y)... binomial coefficient (x!/[(x-y)!y!])
 *m...          maxLambdaExponent (ssl-max)
 *
* * Keep in mind that execution time can increase fast for long strings * and big values for k, especially if you don't use lambda pruning. * With lambda pruning, computation is usually so fast that switching * on the cache leads to slower computation because of setup costs. Therefore * caching is switched off for lambda pruning. *
*
* For details and qualitative experiments about SSK, see [1]
* For details about lambda pruning and performance comparison of SSK * and SSK-LP (SSK with lambda pruning), see [2] * Note that the complexity estimation in [2] assumes no caching of * intermediate results, which has been implemented in the meantime and * greatly improves the speed of the SSK without lambda pruning. *
* *

Notes for usage within Weka

* Only instances of the following form can be processed using string kernels: *
 *+----------+-------------+---------------+
 *|attribute#|     0       |       1       |
 *+----------+-------------+---------------+
 *| content  | [text data] | [class label] |
 *+----------------------------------------+
 * ... or ...
 *+----------+---------------+-------------+
 *|attribute#|     0         |     1       |
 *+----------+---------------+-------------+
 *| content  | [class label] | [text data] |
 *+----------------------------------------+
 *
* * @author Florian Kleedorfer ([email protected]) * @author Alexander K. Seewald ([email protected]) * @version $Revision: 5518 $ */ public class StringKernel extends Kernel implements TechnicalInformationHandler { /** for serialization */ private static final long serialVersionUID = -4902954211202690123L; /** The size of the cache (a prime number) */ private int m_cacheSize = 250007; /** The size of the internal cache for intermediate results (a prime number) */ private int m_internalCacheSize = 200003; /** The attribute number of the string attribute */ private int m_strAttr; /** Kernel cache (i.e., cache for kernel evaluations) */ private double[] m_storage; private long[] m_keys; /** Counts the number of kernel evaluations. */ private int m_kernelEvals; /** The number of instance in the dataset */ private int m_numInsts; /** Pruning method: No Pruning */ public final static int PRUNING_NONE = 0; /** Pruning method: Lambda See [2] for details. */ public final static int PRUNING_LAMBDA = 1; /** Pruning methods */ public static final Tag [] TAGS_PRUNING = { new Tag(PRUNING_NONE, "No pruning"), new Tag(PRUNING_LAMBDA, "Lambda pruning"), }; /** the pruning method */ protected int m_PruningMethod = PRUNING_NONE; /** the decay factor that penalizes non-continuous substring matches. See [1] * for details. */ protected double m_lambda = 0.5; /** The substring length */ private int m_subsequenceLength = 3; /** The maximum substring length for lambda pruning */ private int m_maxSubsequenceLength = 9; /** powers of lambda are prepared prior to kernel evaluations. * all powers between 0 and this value are precalculated */ protected static final int MAX_POWER_OF_LAMBDA = 10000; /** the precalculated powers of lambda */ protected double[] m_powersOflambda = null; /** flag for switching normalization on or off. This defaults to false and * can be turned on by the switch for feature space normalization in SMO */ private boolean m_normalize = false; /** private cache for intermediate results */ private int maxCache; // is set in unnormalizedKernel(s1,s2) private double[] cachekh; private int[] cachekhK; private double[] cachekh2; private int[] cachekh2K; /** cached indexes for private cache */ private int m_multX; private int m_multY; private int m_multZ; private int m_multZZ; private boolean m_useRecursionCache = true; /** * default constructor */ public StringKernel() { super(); } /** * creates a new StringKernel object. Initializes the kernel cache and the * 'lambda cache', i.e. the precalculated powers of lambda from lambda^2 to * lambda^MAX_POWER_OF_LAMBDA * * @param data the dataset to use * @param cacheSize the size of the cache * @param subsequenceLength the subsequence length * @param lambda the lambda value * @param debug whether to output debug information * @throws Exception if something goes wrong */ public StringKernel(Instances data, int cacheSize, int subsequenceLength, double lambda, boolean debug) throws Exception { setDebug(debug); setCacheSize(cacheSize); setInternalCacheSize(200003); setSubsequenceLength(subsequenceLength); setMaxSubsequenceLength(-1); setLambda(lambda); buildKernel(data); } /** * Returns a string describing the kernel * * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Implementation of the subsequence kernel (SSK) as described in [1] " + "and of the subsequence kernel with lambda pruning (SSK-LP) as " + "described in [2].\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Huma Lodhi and Craig Saunders and John Shawe-Taylor and Nello Cristianini and Christopher J. C. H. Watkins"); result.setValue(Field.YEAR, "2002"); result.setValue(Field.TITLE, "Text Classification using String Kernels"); result.setValue(Field.JOURNAL, "Journal of Machine Learning Research"); result.setValue(Field.VOLUME, "2"); result.setValue(Field.PAGES, "419-444"); result.setValue(Field.HTTP, "http://www.jmlr.org/papers/v2/lodhi02a.html"); additional = result.add(Type.TECHREPORT); additional.setValue(Field.AUTHOR, "F. Kleedorfer and A. Seewald"); additional.setValue(Field.YEAR, "2005"); additional.setValue(Field.TITLE, "Implementation of a String Kernel for WEKA"); additional.setValue(Field.INSTITUTION, "Oesterreichisches Forschungsinstitut fuer Artificial Intelligence"); additional.setValue(Field.ADDRESS, "Wien, Austria"); additional.setValue(Field.NUMBER, "TR-2005-13"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result; Enumeration en; String desc; String param; int i; SelectedTag tag; result = new Vector(); en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); desc = ""; param = ""; for (i = 0; i < TAGS_PRUNING.length; i++) { if (i > 0) param += "|"; tag = new SelectedTag(TAGS_PRUNING[i].getID(), TAGS_PRUNING); param += "" + tag.getSelectedTag().getID(); desc += "\t" + tag.getSelectedTag().getID() + " = " + tag.getSelectedTag().getReadable() + "\n"; } result.addElement(new Option( "\tThe pruning method to use:\n" + desc + "\t(default: " + PRUNING_NONE + ")", "P", 1, "-P <" + param + ">")); result.addElement(new Option( "\tThe size of the cache (a prime number).\n" + "\t(default: 250007)", "C", 1, "-C ")); result.addElement(new Option( "\tThe size of the internal cache (a prime number).\n" + "\t(default: 200003)", "IC", 1, "-IC ")); result.addElement(new Option( "\tThe lambda constant. Penalizes non-continuous subsequence\n" + "\tmatches. Must be in (0,1).\n" + "\t(default: 0.5)", "L", 1, "-L ")); result.addElement(new Option( "\tThe length of the subsequence.\n" + "\t(default: 3)", "ssl", 1, "-ssl ")); result.addElement(new Option( "\tThe maximum length of the subsequence.\n" + "\t(default: 9)", "ssl-max", 1, "-ssl-max ")); result.addElement(new Option( "\tUse normalization.\n" + "\t(default: no)", "N", 0, "-N")); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D
   *  Enables debugging output (if available) to be printed.
   *  (default: off)
* *
 -no-checks
   *  Turns off all checks - use with caution!
   *  (default: checks on)
* *
 -P <0|1>
   *  The pruning method to use:
   *  0 = No pruning
   *  1 = Lambda pruning
   *  (default: 0)
* *
 -C <num>
   *  The size of the cache (a prime number).
   *  (default: 250007)
* *
 -IC <num>
   *  The size of the internal cache (a prime number).
   *  (default: 200003)
* *
 -L <num>
   *  The lambda constant. Penalizes non-continuous subsequence
   *  matches. Must be in (0,1).
   *  (default: 0.5)
* *
 -ssl <num>
   *  The length of the subsequence.
   *  (default: 3)
* *
 -ssl-max <num>
   *  The maximum length of the subsequence.
   *  (default: 9)
* *
 -N
   *  Use normalization.
   *  (default: no)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('P', options); if (tmpStr.length() != 0) setPruningMethod( new SelectedTag(Integer.parseInt(tmpStr), TAGS_PRUNING)); else setPruningMethod( new SelectedTag(PRUNING_NONE, TAGS_PRUNING)); tmpStr = Utils.getOption('C', options); if (tmpStr.length() != 0) setCacheSize(Integer.parseInt(tmpStr)); else setCacheSize(250007); tmpStr = Utils.getOption("IC", options); if (tmpStr.length() != 0) setInternalCacheSize(Integer.parseInt(tmpStr)); else setInternalCacheSize(200003); tmpStr = Utils.getOption('L', options); if (tmpStr.length() != 0) setLambda(Double.parseDouble(tmpStr)); else setLambda(0.5); tmpStr = Utils.getOption("ssl", options); if (tmpStr.length() != 0) setSubsequenceLength(Integer.parseInt(tmpStr)); else setSubsequenceLength(3); tmpStr = Utils.getOption("ssl-max", options); if (tmpStr.length() != 0) setMaxSubsequenceLength(Integer.parseInt(tmpStr)); else setMaxSubsequenceLength(9); setUseNormalization(Utils.getFlag('N', options)); if (getMaxSubsequenceLength()<2*getSubsequenceLength()) { throw new IllegalArgumentException("Lambda Pruning forbids even contiguous substring matches! " + "Use a bigger value for ssl-max (at least 2*ssl)."); } super.setOptions(options); } /** * Gets the current settings of the Kernel. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { int i; Vector result; String[] options; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-P"); result.add("" + m_PruningMethod); result.add("-C"); result.add("" + getCacheSize()); result.add("-IC"); result.add("" + getInternalCacheSize()); result.add("-L"); result.add("" + getLambda()); result.add("-ssl"); result.add("" + getSubsequenceLength()); result.add("-ssl-max"); result.add("" + getMaxSubsequenceLength()); if (getUseNormalization()) result.add("-L"); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String pruningMethodTipText() { return "The pruning method."; } /** * Sets the method used to for pruning. * * @param value the pruning method to use. */ public void setPruningMethod(SelectedTag value) { if (value.getTags() == TAGS_PRUNING) m_PruningMethod = value.getSelectedTag().getID(); } /** * Gets the method used for pruning. * * @return the pruning method to use. */ public SelectedTag getPruningMethod() { return new SelectedTag(m_PruningMethod, TAGS_PRUNING); } /** * Sets the size of the cache to use (a prime number) * * @param value the size of the cache */ public void setCacheSize(int value) { if (value >= 0) { m_cacheSize = value; clean(); } else { System.out.println( "Cache size cannot be smaller than 0 (provided: " + value + ")!"); } } /** * Gets the size of the cache * * @return the cache size */ public int getCacheSize() { return m_cacheSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String cacheSizeTipText() { return "The size of the cache (a prime number)."; } /** * sets the size of the internal cache for intermediate results. Memory * consumption is about 16x this amount in bytes. Only use when lambda * pruning is switched off. * * @param value the size of the internal cache */ public void setInternalCacheSize(int value) { if (value >= 0) { m_internalCacheSize = value; clean(); } else { System.out.println( "Cache size cannot be smaller than 0 (provided: " + value + ")!"); } } /** * Gets the size of the internal cache * * @return the cache size */ public int getInternalCacheSize() { return m_internalCacheSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String internalCacheSizeTipText() { return "The size of the internal cache (a prime number)."; } /** * Sets the length of the subsequence. * * @param value the length */ public void setSubsequenceLength(int value) { m_subsequenceLength = value; } /** * Returns the length of the subsequence * * @return the length */ public int getSubsequenceLength() { return m_subsequenceLength; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String subsequenceLengthTipText() { return "The subsequence length."; } /** * Sets the maximum length of the subsequence. * * @param value the maximum length */ public void setMaxSubsequenceLength(int value) { m_maxSubsequenceLength = value; } /** * Returns the maximum length of the subsequence * * @return the maximum length */ public int getMaxSubsequenceLength() { return m_maxSubsequenceLength; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maxSubsequenceLengthTipText() { return "The maximum subsequence length (theta in the paper)"; } /** * Sets the lambda constant used in the string kernel * * @param value the lambda value to use */ public void setLambda(double value) { m_lambda = value; } /** * Gets the lambda constant used in the string kernel * * @return the current lambda constant */ public double getLambda() { return m_lambda; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String lambdaTipText(){ return "Penalizes non-continuous subsequence matches, from (0,1)"; } /** * Sets whether to use normalization. * Each time this value is changed, the kernel cache is cleared. * * @param value whether to use normalization */ public void setUseNormalization(boolean value) { if (value != m_normalize) clean(); m_normalize = value; } /** * Returns whether normalization is used. * * @return true if normalization is used */ public boolean getUseNormalization() { return m_normalize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useNormalizationTipText(){ return "Whether to use normalization."; } /** * Computes the result of the kernel function for two instances. * If id1 == -1, eval use inst1 instead of an instance in the dataset. * * @param id1 the index of the first instance in the dataset * @param id2 the index of the second instance in the dataset * @param inst1 the instance corresponding to id1 (used if id1 == -1) * @return the result of the kernel function * @throws Exception if something goes wrong */ public double eval(int id1, int id2, Instance inst1) throws Exception { if (m_Debug && id1>-1 && id2>-1) { System.err.println("\nEvaluation of string kernel for"); System.err.println(m_data.instance(id1).stringValue(m_strAttr)); System.err.println("and"); System.err.println(m_data.instance(id2).stringValue(m_strAttr)); } //the normalized kernel returns 1 for comparison of //two identical strings if (id1 == id2 && m_normalize) return 1.0; double result = 0; long key = -1; int location = -1; // we can only cache if we know the indexes if ((id1 >= 0) && (m_keys != null)) { if (id1 > id2) { key = (long)id1 * m_numInsts + id2; } else { key = (long)id2 * m_numInsts + id1; } if (key < 0) { throw new Exception("Cache overflow detected!"); } location = (int)(key % m_keys.length); if (m_keys[location] == (key + 1)) { if (m_Debug) System.err.println("result (cached): " + m_storage[location]); return m_storage[location]; } } m_kernelEvals++; long start = System.currentTimeMillis(); Instance inst2 = m_data.instance(id2); char[] s1 = inst1.stringValue(m_strAttr).toCharArray(); char[] s2 = inst2.stringValue(m_strAttr).toCharArray(); // prevent the kernel from returning NaN if (s1.length == 0 || s2.length == 0) return 0; if (m_normalize) { result = normalizedKernel(s1,s2); } else { result = unnormalizedKernel(s1, s2); } if (m_Debug) { long duration = System.currentTimeMillis() - start; System.err.println("result: " + result); System.err.println("evaluation time:" + duration +"\n"); } // store result in cache if (key != -1){ m_storage[location] = result; m_keys[location] = (key + 1); } return result; } /** * Frees the memory used by the kernel. * (Useful with kernels which use cache.) * This function is called when the training is done. * i.e. after that, eval will be called with id1 == -1. */ public void clean() { m_storage = null; m_keys = null; } /** * Returns the number of kernel evaluation performed. * * @return the number of kernel evaluation performed. */ public int numEvals() { return m_kernelEvals; } /** * Returns the number of dot product cache hits. * * @return the number of dot product cache hits, or -1 if not supported by * this kernel. */ public int numCacheHits() { // TODO: implement! return -1; } /** * evaluates the normalized kernel between s and t. See [1] for details about * the normalized SSK. * * @param s first input string * @param t second input string * @return a double indicating their distance, or similarity */ public double normalizedKernel(char[] s, char[] t){ double k1 = unnormalizedKernel(s, s); double k2 = unnormalizedKernel(t, t); double normTerm = Math.sqrt( k1*k2 ); return unnormalizedKernel(s, t) / normTerm; } /** * evaluates the unnormalized kernel between s and t. See [1] for details * about the unnormalized SSK. * * @param s first input string * @param t second input string * @return a double indicating their distance, or similarity */ public double unnormalizedKernel(char[] s, char[] t){ if (t.length > s.length) { //swap because the algorithm is faster if s is //the longer string char[] buf = s; s = t; t = buf; } if (m_PruningMethod == PRUNING_NONE) { m_multX=(s.length+1)*(t.length+1); m_multY=(t.length+1); m_multZ=1; maxCache = m_internalCacheSize; if (maxCache==0) { maxCache=(m_subsequenceLength+1)*m_multX; } else if ((m_subsequenceLength+1)*m_multX See [1] for details * but note that this code is optimized and may be hard to recognize. * * @param n the current length of the matching subsequence * @param s first string, as a char array * @param t second string, as a char array * @param endIndexS the portion of s currently regarded is s[1:endIndexS] * @param endIndexT the portion of t currently regarded is t[1:endIndexT] * @return a double indicating the distance or similarity between s and t, * according to and depending on the initial value for n. */ protected double kernel(int n, char[] s,int endIndexS, char[] t, int endIndexT) { //normal recursion ending case if (Math.min(endIndexS+1,endIndexT+1) < n) return getReturnValue(n); //accumulate all recursion results in one: double result = 0; //the tail-recursive function defined in [1] is turned into a //loop here, preventing stack overflows. //skim s from back to front for (int iS=endIndexS; iS > n-2; iS--) { double buf = 0; //let the current character in s be x char x = s[iS]; // iterate over all occurrences of x in t for (int j=0; j <= endIndexT; j++) { if (t[j] == x){ //this is a match for the current character, hence //1. use previous chars in both strings (iS-1, j-1) //2. decrement the remainingMatchLength (n-1) //and start a recursion branch for these parameters buf += kernelHelper(n-1,s,iS-1, t, j-1); } } //ok, all occurrences of x in t have been found //multiply the result with lambda^2 // (one lambda for x, and the other for all matches of x in t) result += buf * m_powersOflambda[2]; } return result; } /** * The kernel helper function, called K' in [1] and [2]. * * @param n the current length of the matching subsequence * @param s first string, as a char array * @param t second string, as a char array * @param endIndexS the portion of s currently regarded is s[1:endIndexS] * @param endIndexT the portion of t currently regarded is t[1:endIndexT] * @return a partial result for K */ protected double kernelHelper (int n, char[] s,int endIndexS, char[] t, int endIndexT) { //recursion ends if the current subsequence has maximal length, //which is the case here if (n <= 0 ) { return getReturnValue(n); } //recursion ends, too, if the current subsequence is shorter than //maximal length, but there is no chance that it will reach maximal length. //in this case, normally 0 is returned, but the EXPERIMENTAL //minSubsequenceLength feature allows shorter subsequence matches //also to contribute if (Math.min(endIndexS+1,endIndexT+1) < n) { return getReturnValue(n); } int adr = 0; if (m_useRecursionCache) { adr=m_multX*n+m_multY*endIndexS+m_multZ*endIndexT; if ( cachekhK[adr % maxCache] == adr+1) return cachekh[adr % maxCache]; } //the tail-recursive function defined in [1] is turned into a //loop here, preventing stack overflows. //loop over s, nearly from the start (skip the first n-1 characters) //and only up until endIndexS, and recursively apply K''. Thus, every //character between n-1 and endIndexS in s is counted once as //being part of the subsequence match and once just as a gap. //In both cases lambda is multiplied with the result. double result = 0; /* for (int iS = n-1; iS <= endIndexS;iS++) { result *= m_lambda; result += kernelHelper2(n,s,iS, t, endIndexT); } if (m_useRecursionCache) { cachekhK[adr % maxCache]=adr+1; cachekh[adr % maxCache]=result; } return result; */ /* ^^^ again, above code segment does not store some intermediate results... */ result = m_lambda*kernelHelper(n,s,endIndexS-1,t,endIndexT) + kernelHelper2(n,s,endIndexS,t,endIndexT); if (m_useRecursionCache) { cachekhK[adr % maxCache]=adr+1; cachekh[adr % maxCache]=result; } return result; } /** * helper function for the evaluation of the kernel K'' see section * 'Efficient Computation of SSK' in [1] * * @param n the current length of the matching subsequence * @param s first string, as a char array * @param t second string, as a char array * @param endIndexS the portion of s currently regarded is s[1:endIndexS] * @param endIndexT the portion of t currently regarded is t[1:endIndexT] * @return a partial result for K' */ protected double kernelHelper2(int n, char[] s, int endIndexS, char[] t, int endIndexT) { //recursion ends if one of the indices in both strings is <0 if (endIndexS <0 || endIndexT <0) { return getReturnValue(n); } int adr = 0; if (m_useRecursionCache) { adr=m_multX*n+m_multY*endIndexS+m_multZ*endIndexT; if ( cachekh2K[adr % maxCache] == adr+1) return cachekh2[adr % maxCache]; } //spot the last character in s, we'll need it char x = s[endIndexS]; //recurse if the last characters of s and t, x (and y) are identical. //which is an easy case: just add up two recursions, // 1. one that counts x and y as a part of the subsequence match // -> n, endIndexS and endIndexT are decremented for next recursion level // -> lambda^2 is multiplied with the result to account for the length // of 2 that has been added to the length of the subsequence match // by accepting x and y. // 2. one that counts y as a gap in the match // -> only endIndexT is decremented for next recursion level // -> lambda is multiplied with the result to account for the length // of 1 that has been added to the length of the subsequence match // by omitting y. if (x == t[endIndexT]) { double ret = m_lambda * (kernelHelper2(n,s,endIndexS, t, endIndexT-1) + m_lambda * kernelHelper(n-1,s,endIndexS-1, t, endIndexT-1)); if (m_useRecursionCache) { cachekh2K[adr % maxCache]=adr+1; cachekh2[adr % maxCache]=ret; } return ret; } else { double ret = m_lambda*kernelHelper2(n,s,endIndexS,t,endIndexT-1); if (m_useRecursionCache) { cachekh2K[adr % maxCache]=adr+1; cachekh2[adr % maxCache]=ret; } return ret; } //look for x in t from back to front. //this is actually an optimization from [1] that spares unneccessary //recursions iff //x is actually found in t, but not at the last position. /* int i; int threshold = n>0?n-1:0; for (i=endIndexT-1; i >= threshold;i--) { if (x == t[i]) { double ret=getPowerOfLambda(endIndexT-i) * kernelHelper2(n,s,endIndexS, t, i); if (m_useRecursionCache) { cachekh2K[adr % maxCache]=adr+1; cachekh2[adr % maxCache]=ret; } return ret; } } */ //end the recursion if x is not found in t. /* double ret = getReturnValue(n); if (m_useRecursionCache) { cachekh2K[adr % maxCache]=adr+1; cachekh2[adr % maxCache]=ret; } return ret;*/ } /** * the kernel function K explained in [1] using lambda pruning, explained in * [2]. An additional parameter is introduced, which denotes the maximum * length of a subsequence match. This allows for the control of how relaxed * the subsequence matches are.
* * @param n the current length of the matching subsequence * @param s first string, as a char array * @param t second string, as a char array * @param endIndexS the portion of s currently regarded is s[1:endIndexS] * @param endIndexT the portion of t currently regarded is t[1:endIndexT] * @param remainingMatchLength actually the initial value for * maxLambdaExponent * @return a double indicating the distance or similarity between s and t, * according to and depending on the initial value for n. */ protected double kernelLP(int n, char[] s, int endIndexS,char[] t, int endIndexT,int remainingMatchLength) { //see code docs in kernel() if (Math.min(endIndexS+1,endIndexT +1) < n) { return getReturnValue(n); } //lambda pruning check //stops recursion if the match is so long that the resulting //power of lambda is smaller than minLambda //if lambda pruning is not used, the remainingMatchLength is < 0 //and this check never stops the recursion if (remainingMatchLength == 0) return getReturnValue(n); double result = 0; //see code docs in kernel() for (int iS =endIndexS; iS > n-2; iS--) { double buf = 0; char x = s[iS]; for (int j=0; j <= endIndexT; j++) { if (t[j] == x){ //both t[j] and x are considered part of the subsequence match, hence //subtract 2 from the remainingMatchLength buf += kernelHelperLP(n-1,s,iS-1,t,j-1,remainingMatchLength-2); } } result += buf * m_powersOflambda[2]; } return result; } /** * helper function for the evaluation of the kernel (K'n) using lambda pruning * * @param n the current length of the matching subsequence * @param s first string, as a char array * @param t second string, as a char array * @param endIndexS the portion of s currently regarded is s[1:endIndexS] * @param endIndexT the portion of t currently regarded is t[1:endIndexT] * @param remainingMatchLength the number of characters that may still be * used * for matching (i.e. gaps + matches in both strings) * @return a partial result for K */ protected double kernelHelperLP (int n, char[] s, int endIndexS,char[] t, int endIndexT,int remainingMatchLength) { //see code docs in kernelHelper() if (n == 0) { return getReturnValue(n); } //see code docs in kernelHelper() if (Math.min(endIndexS+1,endIndexT +1) < n) {; return getReturnValue(n); } //lambda pruning check //stops recursion if the match is so long that the resulting //power of lambda is smaller than minLambda //if lambda pruning is not used, the remainingMatchLength is < 0 //and this check never stops the recursion if (remainingMatchLength < 2*n) { return getReturnValue(n); } int adr=0; if (m_useRecursionCache) { adr = m_multX*n+m_multY*endIndexS+m_multZ*endIndexT + m_multZZ * remainingMatchLength; if (cachekh2K[adr % maxCache]==adr+1) { return cachekh2[adr % maxCache]; } } int rml = 0; //counts the remaining match length double result = 0; //see code docs in kernelHelper() //difference to implementation in kernelHelper: //*)choose different starting point, which is found counting //the maximal remaining match length from endIndexS. //*)keep track of the remaining match length, rml, which is // incremented each loop for (int iS = (endIndexS-remainingMatchLength); iS <= endIndexS;iS++) { result *= m_lambda; result += kernelHelper2LP(n,s,iS, t, endIndexT,rml++); } if (m_useRecursionCache && endIndexS >= 0 && endIndexT >= 0 && n >= 0) { cachekhK[adr % maxCache]=adr+1; cachekh[adr % maxCache]=result; } return result; } /** * helper function for the evaluation of the kernel (K''n) using lambda * pruning * * @param n the current length of the matching subsequence * @param s first string, as a char array * @param t second string, as a char array * @param endIndexS the portion of s currently regarded is s[1:endIndexS] * @param endIndexT the portion of t currently regarded is t[1:endIndexT] * @param remainingMatchLength the number of characters that may still be * used * for matching (i.e. gaps + matches in both strings) * @return a partial result for K' */ protected double kernelHelper2LP(int n, char[] s, int endIndexS,char[] t, int endIndexT,int remainingMatchLength) { //lambda pruning check //stops recursion if the match is so long that the resulting //power of lambda is smaller than minLambda //if lambda pruning is not used, the remainingMatchLength is < 0 //and this check never stops the recursion //if (remainingMatchLength <= 0) return 0; if (remainingMatchLength < 2*n) return getReturnValue(n); //see code docs in kernelHelper2() if (endIndexS <0 || endIndexT <0) return getReturnValue(n); int adr=0; if (m_useRecursionCache){ adr = m_multX*n+m_multY*endIndexS+m_multZ*endIndexT + m_multZZ * remainingMatchLength; if (cachekh2K[adr % maxCache]==adr+1) { return cachekh2[adr % maxCache]; } } char x = s[endIndexS]; if (x == t[endIndexT]) { double ret = m_lambda * (kernelHelper2LP(n,s,endIndexS,t,endIndexT-1,remainingMatchLength-1) + m_lambda * kernelHelperLP(n-1,s,endIndexS-1,t,endIndexT-1,remainingMatchLength-2)); if (m_useRecursionCache && endIndexS >= 0 && endIndexT >= 0 && n >= 0) { cachekh2K[adr % maxCache]=adr+1; cachekh2[adr % maxCache]=ret; } return ret; } //see code docs in kernelHelper() //differences to implementation in kernelHelper(): //*) choose a different ending point for the loop // based on the remaining match length int i; int minIndex = endIndexT - remainingMatchLength; if (minIndex < 0) minIndex = 0; for (i=endIndexT; i >= minIndex;i--) { if (x == t[i]) { int skipLength = endIndexT -i; double ret = getPowerOfLambda(skipLength) * kernelHelper2LP(n,s,endIndexS,t,i,remainingMatchLength-skipLength); if (m_useRecursionCache && endIndexS >= 0 && endIndexT >= 0 && n >= 0) { cachekh2K[adr % maxCache]=adr+1; cachekh2[adr % maxCache]=ret; } return ret; } } double ret = getReturnValue(n); if (m_useRecursionCache && endIndexS >= 0 && endIndexT >= 0 && n >= 0) { cachekh2K[adr % maxCache]=adr+1; cachekh2[adr % maxCache]=ret; } return ret; } /** * precalculates small powers of lambda to speed up the kernel evaluation * * @return the powers */ private double[] calculatePowersOfLambda(){ double[] powers = new double[MAX_POWER_OF_LAMBDA+1]; powers[0] = 1.0; double val = 1.0; for (int i = 1; i<=MAX_POWER_OF_LAMBDA;i++) { val *= m_lambda; powers[i] = val; } return powers; } /** * retrieves a power of lambda from the lambda cache or calculates it * directly * * @param exponent the exponent to calculate * @return the exponent-th power of lambda */ private double getPowerOfLambda(int exponent){ if (exponent > MAX_POWER_OF_LAMBDA) return Math.pow(m_lambda,exponent); if (exponent < 0) throw new IllegalArgumentException( "only positive powers of lambda may be computed"); return m_powersOflambda[exponent]; } /** * initializes variables etc. * * @param data the data to use */ protected void initVars(Instances data) { super.initVars(data); m_kernelEvals = 0; // take the first string attribute m_strAttr = -1; for (int i = 0; i < data.numAttributes(); i++) { if (i == data.classIndex()) continue; if (data.attribute(i).type() == Attribute.STRING) { m_strAttr = i; break; } } m_numInsts = m_data.numInstances(); m_storage = new double[m_cacheSize]; m_keys = new long[m_cacheSize]; m_powersOflambda = calculatePowersOfLambda(); } /** * Returns the Capabilities of this kernel. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.STRING_ATTRIBUTES); result.enableAllClasses(); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * builds the kernel with the given data. * * @param data the data to base the kernel on * @throws Exception if something goes wrong, e.g., the data does not * consist of one string attribute and the class */ public void buildKernel(Instances data) throws Exception { super.buildKernel(data); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5518 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy