All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.lazy.IBk Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    IBk.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.lazy;

import weka.classifiers.Classifier;
import weka.classifiers.UpdateableClassifier;
import weka.classifiers.rules.ZeroR;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.neighboursearch.LinearNNSearch;
import weka.core.neighboursearch.NearestNeighbourSearch;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.AdditionalMeasureProducer;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * K-nearest neighbours classifier. Can select appropriate value of K based on cross-validation. Can also do distance weighting.
*
* For more information, see
*
* D. Aha, D. Kibler (1991). Instance-based learning algorithms. Machine Learning. 6:37-66. *

* * BibTeX: *

 * @article{Aha1991,
 *    author = {D. Aha and D. Kibler},
 *    journal = {Machine Learning},
 *    pages = {37-66},
 *    title = {Instance-based learning algorithms},
 *    volume = {6},
 *    year = {1991}
 * }
 * 
*

* * Valid options are:

* *

 -I
 *  Weight neighbours by the inverse of their distance
 *  (use when k > 1)
* *
 -F
 *  Weight neighbours by 1 - their distance
 *  (use when k > 1)
* *
 -K <number of neighbors>
 *  Number of nearest neighbours (k) used in classification.
 *  (Default = 1)
* *
 -E
 *  Minimise mean squared error rather than mean absolute
 *  error when using -X option with numeric prediction.
* *
 -W <window size>
 *  Maximum number of training instances maintained.
 *  Training instances are dropped FIFO. (Default = no window)
* *
 -X
 *  Select the number of nearest neighbours between 1
 *  and the k value specified using hold-one-out evaluation
 *  on the training data (use when k > 1)
* *
 -A
 *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
 * 
* * * @author Stuart Inglis ([email protected]) * @author Len Trigg ([email protected]) * @author Eibe Frank ([email protected]) * @version $Revision: 10069 $ */ public class IBk extends Classifier implements OptionHandler, UpdateableClassifier, WeightedInstancesHandler, TechnicalInformationHandler, AdditionalMeasureProducer { /** for serialization. */ static final long serialVersionUID = -3080186098777067172L; /** The training instances used for classification. */ protected Instances m_Train; /** The number of class values (or 1 if predicting numeric). */ protected int m_NumClasses; /** The class attribute type. */ protected int m_ClassType; /** The number of neighbours to use for classification (currently). */ protected int m_kNN; /** * The value of kNN provided by the user. This may differ from * m_kNN if cross-validation is being used. */ protected int m_kNNUpper; /** * Whether the value of k selected by cross validation has * been invalidated by a change in the training instances. */ protected boolean m_kNNValid; /** * The maximum number of training instances allowed. When * this limit is reached, old training instances are removed, * so the training data is "windowed". Set to 0 for unlimited * numbers of instances. */ protected int m_WindowSize; /** Whether the neighbours should be distance-weighted. */ protected int m_DistanceWeighting; /** Whether to select k by cross validation. */ protected boolean m_CrossValidate; /** * Whether to minimise mean squared error rather than mean absolute * error when cross-validating on numeric prediction tasks. */ protected boolean m_MeanSquared; /** no weighting. */ public static final int WEIGHT_NONE = 1; /** weight by 1/distance. */ public static final int WEIGHT_INVERSE = 2; /** weight by 1-distance. */ public static final int WEIGHT_SIMILARITY = 4; /** possible instance weighting methods. */ public static final Tag [] TAGS_WEIGHTING = { new Tag(WEIGHT_NONE, "No distance weighting"), new Tag(WEIGHT_INVERSE, "Weight by 1/distance"), new Tag(WEIGHT_SIMILARITY, "Weight by 1-distance") }; /** for nearest-neighbor search. */ protected NearestNeighbourSearch m_NNSearch = new LinearNNSearch(); /** The number of attributes the contribute to a prediction. */ protected double m_NumAttributesUsed; /** Default ZeroR model to use when there are no training instances */ protected ZeroR m_defaultModel; /** * IBk classifier. Simple instance-based learner that uses the class * of the nearest k training instances for the class of the test * instances. * * @param k the number of nearest neighbors to use for prediction */ public IBk(int k) { init(); setKNN(k); } /** * IB1 classifer. Instance-based learner. Predicts the class of the * single nearest training instance for each test instance. */ public IBk() { init(); } /** * Returns a string describing classifier. * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "K-nearest neighbours classifier. Can " + "select appropriate value of K based on cross-validation. Can also do " + "distance weighting.\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "D. Aha and D. Kibler"); result.setValue(Field.YEAR, "1991"); result.setValue(Field.TITLE, "Instance-based learning algorithms"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "6"); result.setValue(Field.PAGES, "37-66"); return result; } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String KNNTipText() { return "The number of neighbours to use."; } /** * Set the number of neighbours the learner is to use. * * @param k the number of neighbours. */ public void setKNN(int k) { m_kNN = k; m_kNNUpper = k; m_kNNValid = false; } /** * Gets the number of neighbours the learner will use. * * @return the number of neighbours. */ public int getKNN() { return m_kNN; } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String windowSizeTipText() { return "Gets the maximum number of instances allowed in the training " + "pool. The addition of new instances above this value will result " + "in old instances being removed. A value of 0 signifies no limit " + "to the number of training instances."; } /** * Gets the maximum number of instances allowed in the training * pool. The addition of new instances above this value will result * in old instances being removed. A value of 0 signifies no limit * to the number of training instances. * * @return Value of WindowSize. */ public int getWindowSize() { return m_WindowSize; } /** * Sets the maximum number of instances allowed in the training * pool. The addition of new instances above this value will result * in old instances being removed. A value of 0 signifies no limit * to the number of training instances. * * @param newWindowSize Value to assign to WindowSize. */ public void setWindowSize(int newWindowSize) { m_WindowSize = newWindowSize; } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String distanceWeightingTipText() { return "Gets the distance weighting method used."; } /** * Gets the distance weighting method used. Will be one of * WEIGHT_NONE, WEIGHT_INVERSE, or WEIGHT_SIMILARITY * * @return the distance weighting method used. */ public SelectedTag getDistanceWeighting() { return new SelectedTag(m_DistanceWeighting, TAGS_WEIGHTING); } /** * Sets the distance weighting method used. Values other than * WEIGHT_NONE, WEIGHT_INVERSE, or WEIGHT_SIMILARITY will be ignored. * * @param newMethod the distance weighting method to use */ public void setDistanceWeighting(SelectedTag newMethod) { if (newMethod.getTags() == TAGS_WEIGHTING) { m_DistanceWeighting = newMethod.getSelectedTag().getID(); } } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String meanSquaredTipText() { return "Whether the mean squared error is used rather than mean " + "absolute error when doing cross-validation for regression problems."; } /** * Gets whether the mean squared error is used rather than mean * absolute error when doing cross-validation. * * @return true if so. */ public boolean getMeanSquared() { return m_MeanSquared; } /** * Sets whether the mean squared error is used rather than mean * absolute error when doing cross-validation. * * @param newMeanSquared true if so. */ public void setMeanSquared(boolean newMeanSquared) { m_MeanSquared = newMeanSquared; } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String crossValidateTipText() { return "Whether hold-one-out cross-validation will be used to " + "select the best k value between 1 and the value specified as " + "the KNN parameter."; } /** * Gets whether hold-one-out cross-validation will be used * to select the best k value. * * @return true if cross-validation will be used. */ public boolean getCrossValidate() { return m_CrossValidate; } /** * Sets whether hold-one-out cross-validation will be used * to select the best k value. * * @param newCrossValidate true if cross-validation should be used. */ public void setCrossValidate(boolean newCrossValidate) { m_CrossValidate = newCrossValidate; } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String nearestNeighbourSearchAlgorithmTipText() { return "The nearest neighbour search algorithm to use " + "(Default: weka.core.neighboursearch.LinearNNSearch)."; } /** * Returns the current nearestNeighbourSearch algorithm in use. * @return the NearestNeighbourSearch algorithm currently in use. */ public NearestNeighbourSearch getNearestNeighbourSearchAlgorithm() { return m_NNSearch; } /** * Sets the nearestNeighbourSearch algorithm to be used for finding nearest * neighbour(s). * @param nearestNeighbourSearchAlgorithm - The NearestNeighbourSearch class. */ public void setNearestNeighbourSearchAlgorithm(NearestNeighbourSearch nearestNeighbourSearchAlgorithm) { m_NNSearch = nearestNeighbourSearchAlgorithm; } /** * Get the number of training instances the classifier is currently using. * * @return the number of training instances the classifier is currently using */ public int getNumTraining() { return m_Train.numInstances(); } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); m_NumClasses = instances.numClasses(); m_ClassType = instances.classAttribute().type(); m_Train = new Instances(instances, 0, instances.numInstances()); // Throw away initial instances until within the specified window size if ((m_WindowSize > 0) && (instances.numInstances() > m_WindowSize)) { m_Train = new Instances(m_Train, m_Train.numInstances()-m_WindowSize, m_WindowSize); } m_NumAttributesUsed = 0.0; for (int i = 0; i < m_Train.numAttributes(); i++) { if ((i != m_Train.classIndex()) && (m_Train.attribute(i).isNominal() || m_Train.attribute(i).isNumeric())) { m_NumAttributesUsed += 1.0; } } m_NNSearch.setInstances(m_Train); // Invalidate any currently cross-validation selected k m_kNNValid = false; m_defaultModel = new ZeroR(); m_defaultModel.buildClassifier(instances); } /** * Adds the supplied instance to the training set. * * @param instance the instance to add * @throws Exception if instance could not be incorporated * successfully */ public void updateClassifier(Instance instance) throws Exception { if (m_Train.equalHeaders(instance.dataset()) == false) { throw new Exception("Incompatible instance types"); } if (instance.classIsMissing()) { return; } m_Train.add(instance); m_NNSearch.update(instance); m_kNNValid = false; if ((m_WindowSize > 0) && (m_Train.numInstances() > m_WindowSize)) { boolean deletedInstance=false; while (m_Train.numInstances() > m_WindowSize) { m_Train.delete(0); deletedInstance=true; } //rebuild datastructure KDTree currently can't delete if(deletedInstance==true) m_NNSearch.setInstances(m_Train); } } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if an error occurred during the prediction */ public double [] distributionForInstance(Instance instance) throws Exception { if (m_Train.numInstances() == 0) { //throw new Exception("No training instances!"); return m_defaultModel.distributionForInstance(instance); } if ((m_WindowSize > 0) && (m_Train.numInstances() > m_WindowSize)) { m_kNNValid = false; boolean deletedInstance=false; while (m_Train.numInstances() > m_WindowSize) { m_Train.delete(0); } //rebuild datastructure KDTree currently can't delete if(deletedInstance==true) m_NNSearch.setInstances(m_Train); } // Select k by cross validation if (!m_kNNValid && (m_CrossValidate) && (m_kNNUpper >= 1)) { crossValidate(); } m_NNSearch.addInstanceInfo(instance); Instances neighbours = m_NNSearch.kNearestNeighbours(instance, m_kNN); double [] distances = m_NNSearch.getDistances(); double [] distribution = makeDistribution( neighbours, distances ); return distribution; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(8); newVector.addElement(new Option( "\tWeight neighbours by the inverse of their distance\n"+ "\t(use when k > 1)", "I", 0, "-I")); newVector.addElement(new Option( "\tWeight neighbours by 1 - their distance\n"+ "\t(use when k > 1)", "F", 0, "-F")); newVector.addElement(new Option( "\tNumber of nearest neighbours (k) used in classification.\n"+ "\t(Default = 1)", "K", 1,"-K ")); newVector.addElement(new Option( "\tMinimise mean squared error rather than mean absolute\n"+ "\terror when using -X option with numeric prediction.", "E", 0,"-E")); newVector.addElement(new Option( "\tMaximum number of training instances maintained.\n"+ "\tTraining instances are dropped FIFO. (Default = no window)", "W", 1,"-W ")); newVector.addElement(new Option( "\tSelect the number of nearest neighbours between 1\n"+ "\tand the k value specified using hold-one-out evaluation\n"+ "\ton the training data (use when k > 1)", "X", 0,"-X")); newVector.addElement(new Option( "\tThe nearest neighbour search algorithm to use "+ "(default: weka.core.neighboursearch.LinearNNSearch).\n", "A", 0, "-A")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -I
   *  Weight neighbours by the inverse of their distance
   *  (use when k > 1)
* *
 -F
   *  Weight neighbours by 1 - their distance
   *  (use when k > 1)
* *
 -K <number of neighbors>
   *  Number of nearest neighbours (k) used in classification.
   *  (Default = 1)
* *
 -E
   *  Minimise mean squared error rather than mean absolute
   *  error when using -X option with numeric prediction.
* *
 -W <window size>
   *  Maximum number of training instances maintained.
   *  Training instances are dropped FIFO. (Default = no window)
* *
 -X
   *  Select the number of nearest neighbours between 1
   *  and the k value specified using hold-one-out evaluation
   *  on the training data (use when k > 1)
* *
 -A
   *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
   * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String knnString = Utils.getOption('K', options); if (knnString.length() != 0) { setKNN(Integer.parseInt(knnString)); } else { setKNN(1); } String windowString = Utils.getOption('W', options); if (windowString.length() != 0) { setWindowSize(Integer.parseInt(windowString)); } else { setWindowSize(0); } if (Utils.getFlag('I', options)) { setDistanceWeighting(new SelectedTag(WEIGHT_INVERSE, TAGS_WEIGHTING)); } else if (Utils.getFlag('F', options)) { setDistanceWeighting(new SelectedTag(WEIGHT_SIMILARITY, TAGS_WEIGHTING)); } else { setDistanceWeighting(new SelectedTag(WEIGHT_NONE, TAGS_WEIGHTING)); } setCrossValidate(Utils.getFlag('X', options)); setMeanSquared(Utils.getFlag('E', options)); String nnSearchClass = Utils.getOption('A', options); if(nnSearchClass.length() != 0) { String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass); if(nnSearchClassSpec.length == 0) { throw new Exception("Invalid NearestNeighbourSearch algorithm " + "specification string."); } String className = nnSearchClassSpec[0]; nnSearchClassSpec[0] = ""; setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch) Utils.forName( NearestNeighbourSearch.class, className, nnSearchClassSpec) ); } else this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch()); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of IBk. * * @return an array of strings suitable for passing to setOptions() */ public String [] getOptions() { String [] options = new String [11]; int current = 0; options[current++] = "-K"; options[current++] = "" + getKNN(); options[current++] = "-W"; options[current++] = "" + m_WindowSize; if (getCrossValidate()) { options[current++] = "-X"; } if (getMeanSquared()) { options[current++] = "-E"; } if (m_DistanceWeighting == WEIGHT_INVERSE) { options[current++] = "-I"; } else if (m_DistanceWeighting == WEIGHT_SIMILARITY) { options[current++] = "-F"; } options[current++] = "-A"; options[current++] = m_NNSearch.getClass().getName()+" "+Utils.joinOptions(m_NNSearch.getOptions()); while (current < options.length) { options[current++] = ""; } return options; } /** * Returns an enumeration of the additional measure names * produced by the neighbour search algorithm, plus the chosen K in case * cross-validation is enabled. * * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { if (m_CrossValidate) { Enumeration enm = m_NNSearch.enumerateMeasures(); Vector measures = new Vector(); while (enm.hasMoreElements()) measures.add(enm.nextElement()); measures.add("measureKNN"); return measures.elements(); } else { return m_NNSearch.enumerateMeasures(); } } /** * Returns the value of the named measure from the * neighbour search algorithm, plus the chosen K in case * cross-validation is enabled. * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.equals("measureKNN")) return m_kNN; else return m_NNSearch.getMeasure(additionalMeasureName); } /** * Returns a description of this classifier. * * @return a description of this classifier as a string. */ public String toString() { if (m_Train == null) { return "IBk: No model built yet."; } if (m_Train.numInstances() == 0) { return "Warning: no training instances - ZeroR model used."; } if (!m_kNNValid && m_CrossValidate) { crossValidate(); } String result = "IB1 instance-based classifier\n" + "using " + m_kNN; switch (m_DistanceWeighting) { case WEIGHT_INVERSE: result += " inverse-distance-weighted"; break; case WEIGHT_SIMILARITY: result += " similarity-weighted"; break; } result += " nearest neighbour(s) for classification\n"; if (m_WindowSize != 0) { result += "using a maximum of " + m_WindowSize + " (windowed) training instances\n"; } return result; } /** * Initialise scheme variables. */ protected void init() { setKNN(1); m_WindowSize = 0; m_DistanceWeighting = WEIGHT_NONE; m_CrossValidate = false; m_MeanSquared = false; } /** * Turn the list of nearest neighbors into a probability distribution. * * @param neighbours the list of nearest neighboring instances * @param distances the distances of the neighbors * @return the probability distribution * @throws Exception if computation goes wrong or has no class attribute */ protected double [] makeDistribution(Instances neighbours, double[] distances) throws Exception { double total = 0, weight; double [] distribution = new double [m_NumClasses]; // Set up a correction to the estimator if (m_ClassType == Attribute.NOMINAL) { for(int i = 0; i < m_NumClasses; i++) { distribution[i] = 1.0 / Math.max(1,m_Train.numInstances()); } total = (double)m_NumClasses / Math.max(1,m_Train.numInstances()); } for(int i=0; i < neighbours.numInstances(); i++) { // Collect class counts Instance current = neighbours.instance(i); distances[i] = distances[i]*distances[i]; distances[i] = Math.sqrt(distances[i]/m_NumAttributesUsed); switch (m_DistanceWeighting) { case WEIGHT_INVERSE: weight = 1.0 / (distances[i] + 0.001); // to avoid div by zero break; case WEIGHT_SIMILARITY: weight = 1.0 - distances[i]; break; default: // WEIGHT_NONE: weight = 1.0; break; } weight *= current.weight(); try { switch (m_ClassType) { case Attribute.NOMINAL: distribution[(int)current.classValue()] += weight; break; case Attribute.NUMERIC: distribution[0] += current.classValue() * weight; break; } } catch (Exception ex) { throw new Error("Data has no class attribute!"); } total += weight; } // Normalise distribution if (total > 0) { Utils.normalize(distribution, total); } return distribution; } /** * Select the best value for k by hold-one-out cross-validation. * If the class attribute is nominal, classification error is * minimised. If the class attribute is numeric, mean absolute * error is minimised */ protected void crossValidate() { try { if (m_NNSearch instanceof weka.core.neighboursearch.CoverTree) throw new Exception("CoverTree doesn't support hold-one-out "+ "cross-validation. Use some other NN " + "method."); double [] performanceStats = new double [m_kNNUpper]; double [] performanceStatsSq = new double [m_kNNUpper]; for(int i = 0; i < m_kNNUpper; i++) { performanceStats[i] = 0; performanceStatsSq[i] = 0; } m_kNN = m_kNNUpper; Instance instance; Instances neighbours; double[] origDistances, convertedDistances; for(int i = 0; i < m_Train.numInstances(); i++) { if (m_Debug && (i % 50 == 0)) { System.err.print("Cross validating " + i + "/" + m_Train.numInstances() + "\r"); } instance = m_Train.instance(i); neighbours = m_NNSearch.kNearestNeighbours(instance, m_kNN); origDistances = m_NNSearch.getDistances(); for(int j = m_kNNUpper - 1; j >= 0; j--) { // Update the performance stats convertedDistances = new double[origDistances.length]; System.arraycopy(origDistances, 0, convertedDistances, 0, origDistances.length); double [] distribution = makeDistribution(neighbours, convertedDistances); double thisPrediction = Utils.maxIndex(distribution); if (m_Train.classAttribute().isNumeric()) { thisPrediction = distribution[0]; double err = thisPrediction - instance.classValue(); performanceStatsSq[j] += err * err; // Squared error performanceStats[j] += Math.abs(err); // Absolute error } else { if (thisPrediction != instance.classValue()) { performanceStats[j] ++; // Classification error } } if (j >= 1) { neighbours = pruneToK(neighbours, convertedDistances, j); } } } // Display the results of the cross-validation for(int i = 0; i < m_kNNUpper; i++) { if (m_Debug) { System.err.print("Hold-one-out performance of " + (i + 1) + " neighbors " ); } if (m_Train.classAttribute().isNumeric()) { if (m_Debug) { if (m_MeanSquared) { System.err.println("(RMSE) = " + Math.sqrt(performanceStatsSq[i] / m_Train.numInstances())); } else { System.err.println("(MAE) = " + performanceStats[i] / m_Train.numInstances()); } } } else { if (m_Debug) { System.err.println("(%ERR) = " + 100.0 * performanceStats[i] / m_Train.numInstances()); } } } // Check through the performance stats and select the best // k value (or the lowest k if more than one best) double [] searchStats = performanceStats; if (m_Train.classAttribute().isNumeric() && m_MeanSquared) { searchStats = performanceStatsSq; } double bestPerformance = Double.NaN; int bestK = 1; for(int i = 0; i < m_kNNUpper; i++) { if (Double.isNaN(bestPerformance) || (bestPerformance > searchStats[i])) { bestPerformance = searchStats[i]; bestK = i + 1; } } m_kNN = bestK; if (m_Debug) { System.err.println("Selected k = " + bestK); } m_kNNValid = true; } catch (Exception ex) { throw new Error("Couldn't optimize by cross-validation: " +ex.getMessage()); } } /** * Prunes the list to contain the k nearest neighbors. If there are * multiple neighbors at the k'th distance, all will be kept. * * @param neighbours the neighbour instances. * @param distances the distances of the neighbours from target instance. * @param k the number of neighbors to keep. * @return the pruned neighbours. */ public Instances pruneToK(Instances neighbours, double[] distances, int k) { if(neighbours==null || distances==null || neighbours.numInstances()==0) { return null; } if (k < 1) { k = 1; } int currentK = 0; double currentDist; for(int i=0; i < neighbours.numInstances(); i++) { currentK++; currentDist = distances[i]; if(currentK>k && currentDist!=distances[i-1]) { currentK--; neighbours = new Instances(neighbours, 0, currentK); break; } } return neighbours; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 10069 $"); } /** * Main method for testing this class. * * @param argv should contain command line options (see setOptions) */ public static void main(String [] argv) { runClassifier(new IBk(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy