All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.LogitBoost Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    LogitBoost.java
 *    Copyright (C) 1999, 2002 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;
import weka.classifiers.Sourcable;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 
 * Class for performing additive logistic regression. 
* This class performs classification using a regression scheme as the base learner, and can handle multi-class problems. For more information, see
*
* J. Friedman, T. Hastie, R. Tibshirani (1998). Additive Logistic Regression: a Statistical View of Boosting. Stanford University.
*
* Can do efficient internal cross-validation to determine appropriate number of iterations. *

* * BibTeX: *

 * @techreport{Friedman1998,
 *    address = {Stanford University},
 *    author = {J. Friedman and T. Hastie and R. Tibshirani},
 *    title = {Additive Logistic Regression: a Statistical View of Boosting},
 *    year = {1998},
 *    PS = {http://www-stat.stanford.edu/\~jhf/ftp/boost.ps}
 * }
 * 
*

* * Valid options are:

* *

 -Q
 *  Use resampling instead of reweighting for boosting.
* *
 -P <percent>
 *  Percentage of weight mass to base training on.
 *  (default 100, reduce to around 90 speed up)
* *
 -F <num>
 *  Number of folds for internal cross-validation.
 *  (default 0 -- no cross-validation)
* *
 -R <num>
 *  Number of runs for internal cross-validation.
 *  (default 1)
* *
 -L <num>
 *  Threshold on the improvement of the likelihood.
 *  (default -Double.MAX_VALUE)
* *
 -H <num>
 *  Shrinkage parameter.
 *  (default 1)
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -I <num>
 *  Number of iterations.
 *  (default 10)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)
* *
 
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * Options after -- are passed to the designated learner.

* * @author Len Trigg ([email protected]) * @author Eibe Frank ([email protected]) * @version $Revision: 9371 $ */ public class LogitBoost extends RandomizableIteratedSingleClassifierEnhancer implements Sourcable, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization */ private static final long serialVersionUID = 8627452775249625582L; /** Array for storing the generated base classifiers. Note: we are hiding the variable from IteratedSingleClassifierEnhancer*/ protected Classifier [][] m_Classifiers; /** The number of classes */ protected int m_NumClasses; /** The number of successfully generated base classifiers. */ protected int m_NumGenerated; /** The number of folds for the internal cross-validation. */ protected int m_NumFolds = 0; /** The number of runs for the internal cross-validation. */ protected int m_NumRuns = 1; /** Weight thresholding. The percentage of weight mass used in training */ protected int m_WeightThreshold = 100; /** A threshold for responses (Friedman suggests between 2 and 4) */ protected static final double Z_MAX = 3; /** Dummy dataset with a numeric class */ protected Instances m_NumericClassData; /** The actual class attribute (for getting class names) */ protected Attribute m_ClassAttribute; /** Use boosting with reweighting? */ protected boolean m_UseResampling; /** The threshold on the improvement of the likelihood */ protected double m_Precision = -Double.MAX_VALUE; /** The value of the shrinkage parameter */ protected double m_Shrinkage = 1; /** The random number generator used */ protected Random m_RandomInstance = null; /** The value by which the actual target value for the true class is offset. */ protected double m_Offset = 0.0; /** a ZeroR model in case no model can be built from the data */ protected Classifier m_ZeroR; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for performing additive logistic regression. \n" + "This class performs classification using a regression scheme as the " + "base learner, and can handle multi-class problems. For more " + "information, see\n\n" + getTechnicalInformation().toString() + "\n\n" + "Can do efficient internal cross-validation to determine " + "appropriate number of iterations."; } /** * Constructor. */ public LogitBoost() { m_Classifier = new weka.classifiers.trees.DecisionStump(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.TECHREPORT); result.setValue(Field.AUTHOR, "J. Friedman and T. Hastie and R. Tibshirani"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "Additive Logistic Regression: a Statistical View of Boosting"); result.setValue(Field.ADDRESS, "Stanford University"); result.setValue(Field.PS, "http://www-stat.stanford.edu/~jhf/ftp/boost.ps"); return result; } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.DecisionStump"; } /** * Select only instances with weights that contribute to * the specified quantile of the weight distribution * * @param data the input instances * @param quantile the specified quantile eg 0.9 to select * 90% of the weight mass * @return the selected instances */ protected Instances selectWeightQuantile(Instances data, double quantile) { int numInstances = data.numInstances(); Instances trainData = new Instances(data, numInstances); double [] weights = new double [numInstances]; double sumOfWeights = 0; for (int i = 0; i < numInstances; i++) { weights[i] = data.instance(i).weight(); sumOfWeights += weights[i]; } double weightMassToSelect = sumOfWeights * quantile; int [] sortedIndices = Utils.sort(weights); // Select the instances sumOfWeights = 0; for (int i = numInstances-1; i >= 0; i--) { Instance instance = (Instance)data.instance(sortedIndices[i]).copy(); trainData.add(instance); sumOfWeights += weights[sortedIndices[i]]; if ((sumOfWeights > weightMassToSelect) && (i > 0) && (weights[sortedIndices[i]] != weights[sortedIndices[i-1]])) { break; } } if (m_Debug) { System.err.println("Selected " + trainData.numInstances() + " out of " + numInstances); } return trainData; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(6); newVector.addElement(new Option( "\tUse resampling instead of reweighting for boosting.", "Q", 0, "-Q")); newVector.addElement(new Option( "\tPercentage of weight mass to base training on.\n" +"\t(default 100, reduce to around 90 speed up)", "P", 1, "-P ")); newVector.addElement(new Option( "\tNumber of folds for internal cross-validation.\n" +"\t(default 0 -- no cross-validation)", "F", 1, "-F ")); newVector.addElement(new Option( "\tNumber of runs for internal cross-validation.\n" +"\t(default 1)", "R", 1, "-R ")); newVector.addElement(new Option( "\tThreshold on the improvement of the likelihood.\n" +"\t(default -Double.MAX_VALUE)", "L", 1, "-L ")); newVector.addElement(new Option( "\tShrinkage parameter.\n" +"\t(default 1)", "H", 1, "-H ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -Q
   *  Use resampling instead of reweighting for boosting.
* *
 -P <percent>
   *  Percentage of weight mass to base training on.
   *  (default 100, reduce to around 90 speed up)
* *
 -F <num>
   *  Number of folds for internal cross-validation.
   *  (default 0 -- no cross-validation)
* *
 -R <num>
   *  Number of runs for internal cross-validation.
   *  (default 1)
* *
 -L <num>
   *  Threshold on the improvement of the likelihood.
   *  (default -Double.MAX_VALUE)
* *
 -H <num>
   *  Shrinkage parameter.
   *  (default 1)
* *
 -S <num>
   *  Random number seed.
   *  (default 1)
* *
 -I <num>
   *  Number of iterations.
   *  (default 10)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -W
   *  Full name of base classifier.
   *  (default: weka.classifiers.trees.DecisionStump)
* *
 
   * Options specific to classifier weka.classifiers.trees.DecisionStump:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * Options after -- are passed to the designated learner.

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String numFolds = Utils.getOption('F', options); if (numFolds.length() != 0) { setNumFolds(Integer.parseInt(numFolds)); } else { setNumFolds(0); } String numRuns = Utils.getOption('R', options); if (numRuns.length() != 0) { setNumRuns(Integer.parseInt(numRuns)); } else { setNumRuns(1); } String thresholdString = Utils.getOption('P', options); if (thresholdString.length() != 0) { setWeightThreshold(Integer.parseInt(thresholdString)); } else { setWeightThreshold(100); } String precisionString = Utils.getOption('L', options); if (precisionString.length() != 0) { setLikelihoodThreshold(new Double(precisionString). doubleValue()); } else { setLikelihoodThreshold(-Double.MAX_VALUE); } String shrinkageString = Utils.getOption('H', options); if (shrinkageString.length() != 0) { setShrinkage(new Double(shrinkageString). doubleValue()); } else { setShrinkage(1.0); } setUseResampling(Utils.getFlag('Q', options)); if (m_UseResampling && (thresholdString.length() != 0)) { throw new Exception("Weight pruning with resampling"+ "not allowed."); } super.setOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 10]; int current = 0; if (getUseResampling()) { options[current++] = "-Q"; } else { options[current++] = "-P"; options[current++] = "" + getWeightThreshold(); } options[current++] = "-F"; options[current++] = "" + getNumFolds(); options[current++] = "-R"; options[current++] = "" + getNumRuns(); options[current++] = "-L"; options[current++] = "" + getLikelihoodThreshold(); options[current++] = "-H"; options[current++] = "" + getShrinkage(); System.arraycopy(superOptions, 0, options, current, superOptions.length); current += superOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String shrinkageTipText() { return "Shrinkage parameter (use small value like 0.1 to reduce " + "overfitting)."; } /** * Get the value of Shrinkage. * * @return Value of Shrinkage. */ public double getShrinkage() { return m_Shrinkage; } /** * Set the value of Shrinkage. * * @param newShrinkage Value to assign to Shrinkage. */ public void setShrinkage(double newShrinkage) { m_Shrinkage = newShrinkage; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String likelihoodThresholdTipText() { return "Threshold on improvement in likelihood."; } /** * Get the value of Precision. * * @return Value of Precision. */ public double getLikelihoodThreshold() { return m_Precision; } /** * Set the value of Precision. * * @param newPrecision Value to assign to Precision. */ public void setLikelihoodThreshold(double newPrecision) { m_Precision = newPrecision; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numRunsTipText() { return "Number of runs for internal cross-validation."; } /** * Get the value of NumRuns. * * @return Value of NumRuns. */ public int getNumRuns() { return m_NumRuns; } /** * Set the value of NumRuns. * * @param newNumRuns Value to assign to NumRuns. */ public void setNumRuns(int newNumRuns) { m_NumRuns = newNumRuns; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldsTipText() { return "Number of folds for internal cross-validation (default 0 " + "means no cross-validation is performed)."; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public int getNumFolds() { return m_NumFolds; } /** * Set the value of NumFolds. * * @param newNumFolds Value to assign to NumFolds. */ public void setNumFolds(int newNumFolds) { m_NumFolds = newNumFolds; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useResamplingTipText() { return "Whether resampling is used instead of reweighting."; } /** * Set resampling mode * * @param r true if resampling should be done */ public void setUseResampling(boolean r) { m_UseResampling = r; } /** * Get whether resampling is turned on * * @return true if resampling output is on */ public boolean getUseResampling() { return m_UseResampling; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String weightThresholdTipText() { return "Weight threshold for weight pruning (reduce to 90 " + "for speeding up learning process)."; } /** * Set weight thresholding * * @param threshold the percentage of weight mass used for training */ public void setWeightThreshold(int threshold) { m_WeightThreshold = threshold; } /** * Get the degree of weight thresholding * * @return the percentage of weight mass used for training */ public int getWeightThreshold() { return m_WeightThreshold; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.disableAllClassDependencies(); result.enable(Capability.NOMINAL_CLASS); return result; } /** * Builds the boosted classifier * * @param data the data to train the classifier with * @throws Exception if building fails, e.g., can't handle data */ public void buildClassifier(Instances data) throws Exception { m_RandomInstance = new Random(m_Seed); int classIndex = data.classIndex(); if (m_Classifier == null) { throw new Exception("A base classifier has not been specified!"); } if (!(m_Classifier instanceof WeightedInstancesHandler) && !m_UseResampling) { m_UseResampling = true; } // can classifier handle the data? getCapabilities().testWithFail(data); if (m_Debug) { System.err.println("Creating copy of the training data"); } // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); // only class? -> build ZeroR model if (data.numAttributes() == 1) { System.err.println( "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(data); return; } else { m_ZeroR = null; } m_NumClasses = data.numClasses(); m_ClassAttribute = data.classAttribute(); // Create the base classifiers if (m_Debug) { System.err.println("Creating base classifiers"); } m_Classifiers = new Classifier [m_NumClasses][]; for (int j = 0; j < m_NumClasses; j++) { m_Classifiers[j] = Classifier.makeCopies(m_Classifier, getNumIterations()); } // Do we want to select the appropriate number of iterations // using cross-validation? int bestNumIterations = getNumIterations(); if (m_NumFolds > 1) { if (m_Debug) { System.err.println("Processing first fold."); } // Array for storing the results double[] results = new double[getNumIterations()]; // Iterate throught the cv-runs for (int r = 0; r < m_NumRuns; r++) { // Stratify the data data.randomize(m_RandomInstance); data.stratify(m_NumFolds); // Perform the cross-validation for (int i = 0; i < m_NumFolds; i++) { // Get train and test folds Instances train = data.trainCV(m_NumFolds, i, m_RandomInstance); Instances test = data.testCV(m_NumFolds, i); // Make class numeric Instances trainN = new Instances(train); trainN.setClassIndex(-1); trainN.deleteAttributeAt(classIndex); trainN.insertAttributeAt(new Attribute("'pseudo class'"), classIndex); trainN.setClassIndex(classIndex); m_NumericClassData = new Instances(trainN, 0); // Get class values int numInstances = train.numInstances(); double [][] trainFs = new double [numInstances][m_NumClasses]; double [][] trainYs = new double [numInstances][m_NumClasses]; for (int j = 0; j < m_NumClasses; j++) { for (int k = 0; k < numInstances; k++) { trainYs[k][j] = (train.instance(k).classValue() == j) ? 1.0 - m_Offset: 0.0 + (m_Offset / (double)m_NumClasses); } } // Perform iterations double[][] probs = initialProbs(numInstances); m_NumGenerated = 0; double sumOfWeights = train.sumOfWeights(); for (int j = 0; j < getNumIterations(); j++) { performIteration(trainYs, trainFs, probs, trainN, sumOfWeights); Evaluation eval = new Evaluation(train); eval.evaluateModel(this, test); results[j] += eval.correct(); } } } // Find the number of iterations with the lowest error double bestResult = -Double.MAX_VALUE; for (int j = 0; j < getNumIterations(); j++) { if (results[j] > bestResult) { bestResult = results[j]; bestNumIterations = j; } } if (m_Debug) { System.err.println("Best result for " + bestNumIterations + " iterations: " + bestResult); } } // Build classifier on all the data int numInstances = data.numInstances(); double [][] trainFs = new double [numInstances][m_NumClasses]; double [][] trainYs = new double [numInstances][m_NumClasses]; for (int j = 0; j < m_NumClasses; j++) { for (int i = 0, k = 0; i < numInstances; i++, k++) { trainYs[i][j] = (data.instance(k).classValue() == j) ? 1.0 - m_Offset: 0.0 + (m_Offset / (double)m_NumClasses); } } // Make class numeric data.setClassIndex(-1); data.deleteAttributeAt(classIndex); data.insertAttributeAt(new Attribute("'pseudo class'"), classIndex); data.setClassIndex(classIndex); m_NumericClassData = new Instances(data, 0); // Perform iterations double[][] probs = initialProbs(numInstances); double logLikelihood = logLikelihood(trainYs, probs); m_NumGenerated = 0; if (m_Debug) { System.err.println("Avg. log-likelihood: " + logLikelihood); } double sumOfWeights = data.sumOfWeights(); for (int j = 0; j < bestNumIterations; j++) { double previousLoglikelihood = logLikelihood; performIteration(trainYs, trainFs, probs, data, sumOfWeights); logLikelihood = logLikelihood(trainYs, probs); if (m_Debug) { System.err.println("Avg. log-likelihood: " + logLikelihood); } if (Math.abs(previousLoglikelihood - logLikelihood) < m_Precision) { return; } } } /** * Gets the intial class probabilities. * * @param numInstances the number of instances * @return the initial class probabilities */ private double[][] initialProbs(int numInstances) { double[][] probs = new double[numInstances][m_NumClasses]; for (int i = 0; i < numInstances; i++) { for (int j = 0 ; j < m_NumClasses; j++) { probs[i][j] = 1.0 / m_NumClasses; } } return probs; } /** * Computes loglikelihood given class values * and estimated probablities. * * @param trainYs class values * @param probs estimated probabilities * @return the computed loglikelihood */ private double logLikelihood(double[][] trainYs, double[][] probs) { double logLikelihood = 0; for (int i = 0; i < trainYs.length; i++) { for (int j = 0; j < m_NumClasses; j++) { if (trainYs[i][j] == 1.0 - m_Offset) { logLikelihood -= Math.log(probs[i][j]); } } } return logLikelihood / (double)trainYs.length; } /** * Performs one boosting iteration. * * @param trainYs class values * @param trainFs F scores * @param probs probabilities * @param data the data to run the iteration on * @param origSumOfWeights the original sum of weights * @throws Exception in case base classifiers run into problems */ private void performIteration(double[][] trainYs, double[][] trainFs, double[][] probs, Instances data, double origSumOfWeights) throws Exception { if (m_Debug) { System.err.println("Training classifier " + (m_NumGenerated + 1)); } // Build the new models for (int j = 0; j < m_NumClasses; j++) { if (m_Debug) { System.err.println("\t...for class " + (j + 1) + " (" + m_ClassAttribute.name() + "=" + m_ClassAttribute.value(j) + ")"); } // Make copy because we want to save the weights Instances boostData = new Instances(data); // Set instance pseudoclass and weights for (int i = 0; i < probs.length; i++) { // Compute response and weight double p = probs[i][j]; double z, actual = trainYs[i][j]; if (actual == 1 - m_Offset) { z = 1.0 / p; if (z > Z_MAX) { // threshold z = Z_MAX; } } else { z = -1.0 / (1.0 - p); if (z < -Z_MAX) { // threshold z = -Z_MAX; } } double w = (actual - p) / z; // Set values for instance Instance current = boostData.instance(i); current.setValue(boostData.classIndex(), z); current.setWeight(current.weight() * w); } // Scale the weights (helps with some base learners) double sumOfWeights = boostData.sumOfWeights(); double scalingFactor = (double)origSumOfWeights / sumOfWeights; for (int i = 0; i < probs.length; i++) { Instance current = boostData.instance(i); current.setWeight(current.weight() * scalingFactor); } // Select instances to train the classifier on Instances trainData = boostData; if (m_WeightThreshold < 100) { trainData = selectWeightQuantile(boostData, (double)m_WeightThreshold / 100); } else { if (m_UseResampling) { double[] weights = new double[boostData.numInstances()]; for (int kk = 0; kk < weights.length; kk++) { weights[kk] = boostData.instance(kk).weight(); } trainData = boostData.resampleWithWeights(m_RandomInstance, weights); } } // Build the classifier m_Classifiers[j][m_NumGenerated].buildClassifier(trainData); } // Evaluate / increment trainFs from the classifier for (int i = 0; i < trainFs.length; i++) { double [] pred = new double [m_NumClasses]; double predSum = 0; for (int j = 0; j < m_NumClasses; j++) { pred[j] = m_Shrinkage * m_Classifiers[j][m_NumGenerated] .classifyInstance(data.instance(i)); predSum += pred[j]; } predSum /= m_NumClasses; for (int j = 0; j < m_NumClasses; j++) { trainFs[i][j] += (pred[j] - predSum) * (m_NumClasses - 1) / m_NumClasses; } } m_NumGenerated++; // Compute the current probability estimates for (int i = 0; i < trainYs.length; i++) { probs[i] = probs(trainFs[i]); } } /** * Returns the array of classifiers that have been built. * * @return the built classifiers */ public Classifier[][] classifiers() { Classifier[][] classifiers = new Classifier[m_NumClasses][m_NumGenerated]; for (int j = 0; j < m_NumClasses; j++) { for (int i = 0; i < m_NumGenerated; i++) { classifiers[j][i] = m_Classifiers[j][i]; } } return classifiers; } /** * Computes probabilities from F scores * * @param Fs the F scores * @return the computed probabilities */ private double[] probs(double[] Fs) { double maxF = -Double.MAX_VALUE; for (int i = 0; i < Fs.length; i++) { if (Fs[i] > maxF) { maxF = Fs[i]; } } double sum = 0; double[] probs = new double[Fs.length]; for (int i = 0; i < Fs.length; i++) { probs[i] = Math.exp(Fs[i] - maxF); sum += probs[i]; } Utils.normalize(probs, sum); return probs; } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if instance could not be classified * successfully */ public double [] distributionForInstance(Instance instance) throws Exception { // default model? if (m_ZeroR != null) { return m_ZeroR.distributionForInstance(instance); } instance = (Instance)instance.copy(); instance.setDataset(m_NumericClassData); double [] pred = new double [m_NumClasses]; double [] Fs = new double [m_NumClasses]; for (int i = 0; i < m_NumGenerated; i++) { double predSum = 0; for (int j = 0; j < m_NumClasses; j++) { pred[j] = m_Shrinkage * m_Classifiers[j][i].classifyInstance(instance); predSum += pred[j]; } predSum /= m_NumClasses; for (int j = 0; j < m_NumClasses; j++) { Fs[j] += (pred[j] - predSum) * (m_NumClasses - 1) / m_NumClasses; } } return probs(Fs); } /** * Returns the boosted model as Java source code. * * @param className the classname in the generated code * @return the tree as Java source code * @throws Exception if something goes wrong */ public String toSource(String className) throws Exception { if (m_NumGenerated == 0) { throw new Exception("No model built yet"); } if (!(m_Classifiers[0][0] instanceof Sourcable)) { throw new Exception("Base learner " + m_Classifier.getClass().getName() + " is not Sourcable"); } StringBuffer text = new StringBuffer("class "); text.append(className).append(" {\n\n"); text.append(" private static double RtoP(double []R, int j) {\n"+ " double Rcenter = 0;\n"+ " for (int i = 0; i < R.length; i++) {\n"+ " Rcenter += R[i];\n"+ " }\n"+ " Rcenter /= R.length;\n"+ " double Rsum = 0;\n"+ " for (int i = 0; i < R.length; i++) {\n"+ " Rsum += Math.exp(R[i] - Rcenter);\n"+ " }\n"+ " return Math.exp(R[j]) / Rsum;\n"+ " }\n\n"); text.append(" public static double classify(Object[] i) {\n" + " double [] d = distribution(i);\n" + " double maxV = d[0];\n" + " int maxI = 0;\n"+ " for (int j = 1; j < " + m_NumClasses + "; j++) {\n"+ " if (d[j] > maxV) { maxV = d[j]; maxI = j; }\n"+ " }\n return (double) maxI;\n }\n\n"); text.append(" public static double [] distribution(Object [] i) {\n"); text.append(" double [] Fs = new double [" + m_NumClasses + "];\n"); text.append(" double [] Fi = new double [" + m_NumClasses + "];\n"); text.append(" double Fsum;\n"); for (int i = 0; i < m_NumGenerated; i++) { text.append(" Fsum = 0;\n"); for (int j = 0; j < m_NumClasses; j++) { text.append(" Fi[" + j + "] = " + className + '_' +j + '_' + i + ".classify(i); Fsum += Fi[" + j + "];\n"); } text.append(" Fsum /= " + m_NumClasses + ";\n"); text.append(" for (int j = 0; j < " + m_NumClasses + "; j++) {"); text.append(" Fs[j] += (Fi[j] - Fsum) * " + (m_NumClasses - 1) + " / " + m_NumClasses + "; }\n"); } text.append(" double [] dist = new double [" + m_NumClasses + "];\n" + " for (int j = 0; j < " + m_NumClasses + "; j++) {\n"+ " dist[j] = RtoP(Fs, j);\n"+ " }\n return dist;\n"); text.append(" }\n}\n"); for (int i = 0; i < m_Classifiers.length; i++) { for (int j = 0; j < m_Classifiers[i].length; j++) { text.append(((Sourcable)m_Classifiers[i][j]) .toSource(className + '_' + i + '_' + j)); } } return text.toString(); } /** * Returns description of the boosted classifier. * * @return description of the boosted classifier as a string */ public String toString() { // only ZeroR model? if (m_ZeroR != null) { StringBuffer buf = new StringBuffer(); buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); buf.append(m_ZeroR.toString()); return buf.toString(); } StringBuffer text = new StringBuffer(); if (m_NumGenerated == 0) { text.append("LogitBoost: No model built yet."); // text.append(m_Classifiers[0].toString()+"\n"); } else { text.append("LogitBoost: Base classifiers and their weights: \n"); for (int i = 0; i < m_NumGenerated; i++) { text.append("\nIteration "+(i+1)); for (int j = 0; j < m_NumClasses; j++) { text.append("\n\tClass " + (j + 1) + " (" + m_ClassAttribute.name() + "=" + m_ClassAttribute.value(j) + ")\n\n" + m_Classifiers[j][i].toString() + "\n"); } } text.append("Number of performed iterations: " + m_NumGenerated + "\n"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9371 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new LogitBoost(), argv); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy