All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.RandomCommittee Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    RandomCommittee.java
 *    Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import weka.classifiers.Classifier;
import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Randomizable;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

import java.util.Random;

/**
 
 * Class for building an ensemble of randomizable base classifiers. Each base classifiers is built using a different random number seed (but based one the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers.
 * 

* * Valid options are:

* *

 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -I <num>
 *  Number of iterations.
 *  (default 10)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.RandomTree)
* *
 
 * Options specific to classifier weka.classifiers.trees.RandomTree:
 * 
* *
 -K <number of attributes>
 *  Number of attributes to randomly investigate
 *  (<1 = int(log(#attributes)+1)).
* *
 -M <minimum number of instances>
 *  Set minimum number of instances per leaf.
* *
 -S <num>
 *  Seed for random number generator.
 *  (default 1)
* *
 -depth <num>
 *  The maximum depth of the tree, 0 for unlimited.
 *  (default 0)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * Options after -- are passed to the designated classifier.

* * @author Eibe Frank ([email protected]) * @version $Revision: 1.13 $ */ public class RandomCommittee extends RandomizableIteratedSingleClassifierEnhancer implements WeightedInstancesHandler { /** for serialization */ static final long serialVersionUID = -9204394360557300092L; /** * Constructor. */ public RandomCommittee() { m_Classifier = new weka.classifiers.trees.RandomTree(); } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.RandomTree"; } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building an ensemble of randomizable base classifiers. Each " + "base classifiers is built using a different random number seed (but based " + "one the same data). The final prediction is a straight average of the " + "predictions generated by the individual base classifiers."; } /** * Builds the committee of randomizable classifiers. * * @param data the training data to be used for generating the * bagged classifier. * @exception Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); if (!(m_Classifier instanceof Randomizable)) { throw new IllegalArgumentException("Base learner must implement Randomizable!"); } m_Classifiers = Classifier.makeCopies(m_Classifier, m_NumIterations); Random random = data.getRandomNumberGenerator(m_Seed); for (int j = 0; j < m_Classifiers.length; j++) { // Set the random number seed for the current classifier. ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt()); // Build the classifier. m_Classifiers[j].buildClassifier(data); } } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return preedicted class probability distribution * @exception Exception if distribution can't be computed successfully */ public double[] distributionForInstance(Instance instance) throws Exception { double [] sums = new double [instance.numClasses()], newProbs; for (int i = 0; i < m_NumIterations; i++) { if (instance.classAttribute().isNumeric() == true) { sums[0] += m_Classifiers[i].classifyInstance(instance); } else { newProbs = m_Classifiers[i].distributionForInstance(instance); for (int j = 0; j < newProbs.length; j++) sums[j] += newProbs[j]; } } if (instance.classAttribute().isNumeric() == true) { sums[0] /= (double)m_NumIterations; return sums; } else if (Utils.eq(Utils.sum(sums), 0)) { return sums; } else { Utils.normalize(sums); return sums; } } /** * Returns description of the committee. * * @return description of the committee as a string */ public String toString() { if (m_Classifiers == null) { return "RandomCommittee: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("All the base classifiers: \n\n"); for (int i = 0; i < m_Classifiers.length; i++) text.append(m_Classifiers[i].toString() + "\n\n"); return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.13 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new RandomCommittee(), argv); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy