All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.nestedDichotomies.DataNearBalancedND Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribsute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    DataNearBalancedND.java
 *    Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */
package weka.classifiers.meta.nestedDichotomies;

import weka.classifiers.Classifier;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.classifiers.meta.FilteredClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Range;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.MakeIndicator;
import weka.filters.unsupervised.instance.RemoveWithValues;

import java.util.Hashtable;
import java.util.Random;


/**
 
 * A meta classifier for handling multi-class datasets with 2-class classifiers by building a random data-balanced tree structure.
*
* For more info, check
*
* Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95, 2005.
*
* Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class problems. In: Twenty-first International Conference on Machine Learning, 2004. *

* * BibTeX: *

 * @inproceedings{Dong2005,
 *    author = {Lin Dong and Eibe Frank and Stefan Kramer},
 *    booktitle = {PKDD},
 *    pages = {84-95},
 *    publisher = {Springer},
 *    title = {Ensembles of Balanced Nested Dichotomies for Multi-class Problems},
 *    year = {2005}
 * }
 * 
 * @inproceedings{Frank2004,
 *    author = {Eibe Frank and Stefan Kramer},
 *    booktitle = {Twenty-first International Conference on Machine Learning},
 *    publisher = {ACM},
 *    title = {Ensembles of nested dichotomies for multi-class problems},
 *    year = {2004}
 * }
 * 
*

* * Valid options are:

* *

 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.J48)
* *
 
 * Options specific to classifier weka.classifiers.trees.J48:
 * 
* *
 -U
 *  Use unpruned tree.
* *
 -C <pruning confidence>
 *  Set confidence threshold for pruning.
 *  (default 0.25)
* *
 -M <minimum number of instances>
 *  Set minimum number of instances per leaf.
 *  (default 2)
* *
 -R
 *  Use reduced error pruning.
* *
 -N <number of folds>
 *  Set number of folds for reduced error
 *  pruning. One fold is used as pruning set.
 *  (default 3)
* *
 -B
 *  Use binary splits only.
* *
 -S
 *  Don't perform subtree raising.
* *
 -L
 *  Do not clean up after the tree has been built.
* *
 -A
 *  Laplace smoothing for predicted probabilities.
* *
 -Q <seed>
 *  Seed for random data shuffling (default 1).
* * * @author Lin Dong * @author Eibe Frank */ public class DataNearBalancedND extends RandomizableSingleClassifierEnhancer implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 5117477294209496368L; /** The filtered classifier in which the base classifier is wrapped. */ protected FilteredClassifier m_FilteredClassifier; /** The hashtable for this node. */ protected Hashtable m_classifiers=new Hashtable(); /** The first successor */ protected DataNearBalancedND m_FirstSuccessor = null; /** The second successor */ protected DataNearBalancedND m_SecondSuccessor = null; /** The classes that are grouped together at the current node */ protected Range m_Range = null; /** Is Hashtable given from END? */ protected boolean m_hashtablegiven = false; /** * Constructor. */ public DataNearBalancedND() { m_Classifier = new weka.classifiers.trees.J48(); } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.J48"; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Lin Dong and Eibe Frank and Stefan Kramer"); result.setValue(Field.TITLE, "Ensembles of Balanced Nested Dichotomies for Multi-class Problems"); result.setValue(Field.BOOKTITLE, "PKDD"); result.setValue(Field.YEAR, "2005"); result.setValue(Field.PAGES, "84-95"); result.setValue(Field.PUBLISHER, "Springer"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Eibe Frank and Stefan Kramer"); additional.setValue(Field.TITLE, "Ensembles of nested dichotomies for multi-class problems"); additional.setValue(Field.BOOKTITLE, "Twenty-first International Conference on Machine Learning"); additional.setValue(Field.YEAR, "2004"); additional.setValue(Field.PUBLISHER, "ACM"); return result; } /** * Set hashtable from END. * * @param table the hashtable to use */ public void setHashtable(Hashtable table) { m_hashtablegiven = true; m_classifiers = table; } /** * Generates a classifier for the current node and proceeds recursively. * * @param data contains the (multi-class) instances * @param classes contains the indices of the classes that are present * @param rand the random number generator to use * @param classifier the classifier to use * @param table the Hashtable to use * @param instsNumAllClasses * @throws Exception if anything goes worng */ private void generateClassifierForNode(Instances data, Range classes, Random rand, Classifier classifier, Hashtable table, double[] instsNumAllClasses) throws Exception { // Get the indices int[] indices = classes.getSelection(); // Randomize the order of the indices for (int j = indices.length - 1; j > 0; j--) { int randPos = rand.nextInt(j + 1); int temp = indices[randPos]; indices[randPos] = indices[j]; indices[j] = temp; } // Pick the classes for the current split double total = 0; for (int j = 0; j < indices.length; j++) { total += instsNumAllClasses[indices[j]]; } double halfOfTotal = total / 2; // Go through the list of classes until the either the left or // right subset exceeds half the total weight double sumLeft = 0, sumRight = 0; int i = 0, j = indices.length - 1; do { if (i == j) { if (rand.nextBoolean()) { sumLeft += instsNumAllClasses[indices[i++]]; } else { sumRight += instsNumAllClasses[indices[j--]]; } } else { sumLeft += instsNumAllClasses[indices[i++]]; sumRight += instsNumAllClasses[indices[j--]]; } } while (Utils.sm(sumLeft, halfOfTotal) && Utils.sm(sumRight, halfOfTotal)); int first = 0, second = 0; if (!Utils.sm(sumLeft, halfOfTotal)) { first = i; } else { first = j + 1; } second = indices.length - first; int[] firstInds = new int[first]; int[] secondInds = new int[second]; System.arraycopy(indices, 0, firstInds, 0, first); System.arraycopy(indices, first, secondInds, 0, second); // Sort the indices (important for hash key)! int[] sortedFirst = Utils.sort(firstInds); int[] sortedSecond = Utils.sort(secondInds); int[] firstCopy = new int[first]; int[] secondCopy = new int[second]; for (int k = 0; k < sortedFirst.length; k++) { firstCopy[k] = firstInds[sortedFirst[k]]; } firstInds = firstCopy; for (int k = 0; k < sortedSecond.length; k++) { secondCopy[k] = secondInds[sortedSecond[k]]; } secondInds = secondCopy; // Unify indices to improve hashing if (firstInds[0] > secondInds[0]) { int[] help = secondInds; secondInds = firstInds; firstInds = help; int help2 = second; second = first; first = help2; } m_Range = new Range(Range.indicesToRangeList(firstInds)); m_Range.setUpper(data.numClasses() - 1); Range secondRange = new Range(Range.indicesToRangeList(secondInds)); secondRange.setUpper(data.numClasses() - 1); // Change the class labels and build the classifier MakeIndicator filter = new MakeIndicator(); filter.setAttributeIndex("" + (data.classIndex() + 1)); filter.setValueIndices(m_Range.getRanges()); filter.setNumeric(false); filter.setInputFormat(data); m_FilteredClassifier = new FilteredClassifier(); if (data.numInstances() > 0) { m_FilteredClassifier.setClassifier(Classifier.makeCopies(classifier, 1)[0]); } else { m_FilteredClassifier.setClassifier(new weka.classifiers.rules.ZeroR()); } m_FilteredClassifier.setFilter(filter); // Save reference to hash table at current node m_classifiers=table; if (!m_classifiers.containsKey( getString(firstInds) + "|" + getString(secondInds))) { m_FilteredClassifier.buildClassifier(data); m_classifiers.put(getString(firstInds) + "|" + getString(secondInds), m_FilteredClassifier); } else { m_FilteredClassifier=(FilteredClassifier)m_classifiers.get(getString(firstInds) + "|" + getString(secondInds)); } // Create two successors if necessary m_FirstSuccessor = new DataNearBalancedND(); if (first == 1) { m_FirstSuccessor.m_Range = m_Range; } else { RemoveWithValues rwv = new RemoveWithValues(); rwv.setInvertSelection(true); rwv.setNominalIndices(m_Range.getRanges()); rwv.setAttributeIndex("" + (data.classIndex() + 1)); rwv.setInputFormat(data); Instances firstSubset = Filter.useFilter(data, rwv); m_FirstSuccessor.generateClassifierForNode(firstSubset, m_Range, rand, classifier, m_classifiers, instsNumAllClasses); } m_SecondSuccessor = new DataNearBalancedND(); if (second == 1) { m_SecondSuccessor.m_Range = secondRange; } else { RemoveWithValues rwv = new RemoveWithValues(); rwv.setInvertSelection(true); rwv.setNominalIndices(secondRange.getRanges()); rwv.setAttributeIndex("" + (data.classIndex() + 1)); rwv.setInputFormat(data); Instances secondSubset = Filter.useFilter(data, rwv); m_SecondSuccessor = new DataNearBalancedND(); m_SecondSuccessor.generateClassifierForNode(secondSubset, secondRange, rand, classifier, m_classifiers, instsNumAllClasses); } } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(1); return result; } /** * Builds tree recursively. * * @param data contains the (multi-class) instances * @throws Exception if the building fails */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); Random random = data.getRandomNumberGenerator(m_Seed); if (!m_hashtablegiven) { m_classifiers = new Hashtable(); } // Check which classes are present in the // data and construct initial list of classes boolean[] present = new boolean[data.numClasses()]; for (int i = 0; i < data.numInstances(); i++) { present[(int)data.instance(i).classValue()] = true; } StringBuffer list = new StringBuffer(); for (int i = 0; i < present.length; i++) { if (present[i]) { if (list.length() > 0) { list.append(","); } list.append(i + 1); } } // Determine the number of instances in each class double[] instsNum = new double[data.numClasses()]; for (int i = 0; i < data.numInstances(); i++) { instsNum[(int)data.instance(i).classValue()] += data.instance(i).weight(); } Range newRange = new Range(list.toString()); newRange.setUpper(data.numClasses() - 1); generateClassifierForNode(data, newRange, random, m_Classifier, m_classifiers, instsNum); } /** * Predicts the class distribution for a given instance * * @param inst the (multi-class) instance to be classified * @return the class distribution * @throws Exception if computing fails */ public double[] distributionForInstance(Instance inst) throws Exception { double[] newDist = new double[inst.numClasses()]; if (m_FirstSuccessor == null) { for (int i = 0; i < inst.numClasses(); i++) { if (m_Range.isInRange(i)) { newDist[i] = 1; } } return newDist; } else { double[] firstDist = m_FirstSuccessor.distributionForInstance(inst); double[] secondDist = m_SecondSuccessor.distributionForInstance(inst); double[] dist = m_FilteredClassifier.distributionForInstance(inst); for (int i = 0; i < inst.numClasses(); i++) { if ((firstDist[i] > 0) && (secondDist[i] > 0)) { System.err.println("Panik!!"); } if (m_Range.isInRange(i)) { newDist[i] = dist[1] * firstDist[i]; } else { newDist[i] = dist[0] * secondDist[i]; } } if (!Utils.eq(Utils.sum(newDist), 1)) { System.err.println(Utils.sum(newDist)); for (int j = 0; j < dist.length; j++) { System.err.print(dist[j] + " "); } System.err.println(); for (int j = 0; j < newDist.length; j++) { System.err.print(newDist[j] + " "); } System.err.println(); System.err.println(inst); System.err.println(m_FilteredClassifier); //System.err.println(m_Data); System.err.println("bad"); } return newDist; } } /** * Returns the list of indices as a string. * * @param indices the indices to return as string * @return the indices as string */ public String getString(int [] indices) { StringBuffer string = new StringBuffer(); for (int i = 0; i < indices.length; i++) { if (i > 0) { string.append(','); } string.append(indices[i]); } return string.toString(); } /** * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "A meta classifier for handling multi-class datasets with 2-class " + "classifiers by building a random data-balanced tree structure.\n\n" + "For more info, check\n\n" + getTechnicalInformation().toString(); } /** * Outputs the classifier as a string. * * @return a string representation of the classifier */ public String toString() { if (m_classifiers == null) { return "DataNearBalancedND: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("DataNearBalancedND"); treeToString(text, 0); return text.toString(); } /** * Returns string description of the tree. * * @param text the buffer to add the node to * @param nn the node number * @return the next node number */ private int treeToString(StringBuffer text, int nn) { nn++; text.append("\n\nNode number: " + nn + "\n\n"); if (m_FilteredClassifier != null) { text.append(m_FilteredClassifier); } else { text.append("null"); } if (m_FirstSuccessor != null) { nn = m_FirstSuccessor.treeToString(text, nn); nn = m_SecondSuccessor.treeToString(text, nn); } return nn; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.8 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new DataNearBalancedND(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy