All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.nestedDichotomies.ND Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    ND.java
 *    Copyright (C) 2003-2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta.nestedDichotomies;

import weka.classifiers.Classifier;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.classifiers.meta.FilteredClassifier;
import weka.classifiers.rules.ZeroR;
import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.MakeIndicator;
import weka.filters.unsupervised.instance.RemoveWithValues;

import java.io.Serializable;
import java.util.Hashtable;
import java.util.Random;

/**
 
 * A meta classifier for handling multi-class datasets with 2-class classifiers by building a random tree structure.
*
* For more info, check
*
* Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95, 2005.
*
* Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class problems. In: Twenty-first International Conference on Machine Learning, 2004. *

* * BibTeX: *

 * @inproceedings{Dong2005,
 *    author = {Lin Dong and Eibe Frank and Stefan Kramer},
 *    booktitle = {PKDD},
 *    pages = {84-95},
 *    publisher = {Springer},
 *    title = {Ensembles of Balanced Nested Dichotomies for Multi-class Problems},
 *    year = {2005}
 * }
 * 
 * @inproceedings{Frank2004,
 *    author = {Eibe Frank and Stefan Kramer},
 *    booktitle = {Twenty-first International Conference on Machine Learning},
 *    publisher = {ACM},
 *    title = {Ensembles of nested dichotomies for multi-class problems},
 *    year = {2004}
 * }
 * 
*

* * Valid options are:

* *

 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.J48)
* *
 
 * Options specific to classifier weka.classifiers.trees.J48:
 * 
* *
 -U
 *  Use unpruned tree.
* *
 -C <pruning confidence>
 *  Set confidence threshold for pruning.
 *  (default 0.25)
* *
 -M <minimum number of instances>
 *  Set minimum number of instances per leaf.
 *  (default 2)
* *
 -R
 *  Use reduced error pruning.
* *
 -N <number of folds>
 *  Set number of folds for reduced error
 *  pruning. One fold is used as pruning set.
 *  (default 3)
* *
 -B
 *  Use binary splits only.
* *
 -S
 *  Don't perform subtree raising.
* *
 -L
 *  Do not clean up after the tree has been built.
* *
 -A
 *  Laplace smoothing for predicted probabilities.
* *
 -Q <seed>
 *  Seed for random data shuffling (default 1).
* * * @author Eibe Frank * @author Lin Dong */ public class ND extends RandomizableSingleClassifierEnhancer implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -6355893369855683820L; /** * a node class */ protected class NDTree implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = 4284655952754474880L; /** The indices associated with this node */ protected FastVector m_indices = null; /** The parent */ protected NDTree m_parent = null; /** The left successor */ protected NDTree m_left = null; /** The right successor */ protected NDTree m_right = null; /** * Constructor. */ protected NDTree() { m_indices = new FastVector(1); m_indices.addElement(new Integer(Integer.MAX_VALUE)); } /** * Locates the node with the given index (depth-first traversal). */ protected NDTree locateNode(int nodeIndex, int[] currentIndex) { if (nodeIndex == currentIndex[0]) { return this; } else if (m_left == null) { return null; } else { currentIndex[0]++; NDTree leftresult = m_left.locateNode(nodeIndex, currentIndex); if (leftresult != null) { return leftresult; } else { currentIndex[0]++; return m_right.locateNode(nodeIndex, currentIndex); } } } /** * Inserts a class index into the tree. * * @param classIndex the class index to insert */ protected void insertClassIndex(int classIndex) { // Create new nodes NDTree right = new NDTree(); if (m_left != null) { m_right.m_parent = right; m_left.m_parent = right; right.m_right = m_right; right.m_left = m_left; } m_right = right; m_right.m_indices = (FastVector)m_indices.copy(); m_right.m_parent = this; m_left = new NDTree(); m_left.insertClassIndexAtNode(classIndex); m_left.m_parent = this; // Propagate class Index propagateClassIndex(classIndex); } /** * Propagates class index to the root. * * @param classIndex the index to propagate to the root */ protected void propagateClassIndex(int classIndex) { insertClassIndexAtNode(classIndex); if (m_parent != null) { m_parent.propagateClassIndex(classIndex); } } /** * Inserts the class index at a given node. * * @param classIndex the classIndex to insert */ protected void insertClassIndexAtNode(int classIndex) { int i = 0; while (classIndex > ((Integer)m_indices.elementAt(i)).intValue()) { i++; } m_indices.insertElementAt(new Integer(classIndex), i); } /** * Gets the indices in an array of ints. * * @return the indices */ protected int[] getIndices() { int[] ints = new int[m_indices.size() - 1]; for (int i = 0; i < m_indices.size() - 1; i++) { ints[i] = ((Integer)m_indices.elementAt(i)).intValue(); } return ints; } /** * Checks whether an index is in the array. * * @param index the index to check * @return true of the index is in the array */ protected boolean contains(int index) { for (int i = 0; i < m_indices.size() - 1; i++) { if (index == ((Integer)m_indices.elementAt(i)).intValue()) { return true; } } return false; } /** * Returns the list of indices as a string. * * @return the indices as string */ protected String getString() { StringBuffer string = new StringBuffer(); for (int i = 0; i < m_indices.size() - 1; i++) { if (i > 0) { string.append(','); } string.append(((Integer)m_indices.elementAt(i)).intValue() + 1); } return string.toString(); } /** * Unifies tree for improve hashing. */ protected void unifyTree() { if (m_left != null) { if (((Integer)m_left.m_indices.elementAt(0)).intValue() > ((Integer)m_right.m_indices.elementAt(0)).intValue()) { NDTree temp = m_left; m_left = m_right; m_right = temp; } m_left.unifyTree(); m_right.unifyTree(); } } /** * Returns a description of the tree rooted at this node. * * @param text the buffer to add the node to * @param id the node id * @param level the level of the tree */ protected void toString(StringBuffer text, int[] id, int level) { for (int i = 0; i < level; i++) { text.append(" | "); } text.append(id[0] + ": " + getString() + "\n"); if (m_left != null) { id[0]++; m_left.toString(text, id, level + 1); id[0]++; m_right.toString(text, id, level + 1); } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } } /** The tree of classes */ protected NDTree m_ndtree = null; /** The hashtable containing all the classifiers */ protected Hashtable m_classifiers = null; /** Is Hashtable given from END? */ protected boolean m_hashtablegiven = false; /** * Constructor. */ public ND() { m_Classifier = new weka.classifiers.trees.J48(); } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.J48"; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Lin Dong and Eibe Frank and Stefan Kramer"); result.setValue(Field.TITLE, "Ensembles of Balanced Nested Dichotomies for Multi-class Problems"); result.setValue(Field.BOOKTITLE, "PKDD"); result.setValue(Field.YEAR, "2005"); result.setValue(Field.PAGES, "84-95"); result.setValue(Field.PUBLISHER, "Springer"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Eibe Frank and Stefan Kramer"); additional.setValue(Field.TITLE, "Ensembles of nested dichotomies for multi-class problems"); additional.setValue(Field.BOOKTITLE, "Twenty-first International Conference on Machine Learning"); additional.setValue(Field.YEAR, "2004"); additional.setValue(Field.PUBLISHER, "ACM"); return result; } /** * Set hashtable from END. * * @param table the hashtable to use */ public void setHashtable(Hashtable table) { m_hashtablegiven = true; m_classifiers = table; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(1); return result; } /** * Builds the classifier. * * @param data the data to train the classifier with * @throws Exception if anything goes wrong */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); Random random = data.getRandomNumberGenerator(m_Seed); if (!m_hashtablegiven) { m_classifiers = new Hashtable(); } // Generate random class hierarchy int[] indices = new int[data.numClasses()]; for (int i = 0; i < indices.length; i++) { indices[i] = i; } // Randomize list of class indices for (int i = indices.length - 1; i > 0; i--) { int help = indices[i]; int index = random.nextInt(i + 1); indices[i] = indices[index]; indices[index] = help; } // Insert random class index at randomly chosen node m_ndtree = new NDTree(); m_ndtree.insertClassIndexAtNode(indices[0]); for (int i = 1; i < indices.length; i++) { int nodeIndex = random.nextInt(2 * i - 1); NDTree node = m_ndtree.locateNode(nodeIndex, new int[1]); node.insertClassIndex(indices[i]); } m_ndtree.unifyTree(); // Build classifiers buildClassifierForNode(m_ndtree, data); } /** * Builds the classifier for one node. * * @param node the node to build the classifier for * @param data the data to work with * @throws Exception if anything goes wrong */ public void buildClassifierForNode(NDTree node, Instances data) throws Exception { // Are we at a leaf node ? if (node.m_left != null) { // Create classifier MakeIndicator filter = new MakeIndicator(); filter.setAttributeIndex("" + (data.classIndex() + 1)); filter.setValueIndices(node.m_right.getString()); filter.setNumeric(false); filter.setInputFormat(data); FilteredClassifier classifier = new FilteredClassifier(); if (data.numInstances() > 0) { classifier.setClassifier(Classifier.makeCopies(m_Classifier, 1)[0]); } else { classifier.setClassifier(new ZeroR()); } classifier.setFilter(filter); if (!m_classifiers.containsKey(node.m_left.getString() + "|" + node.m_right.getString())) { classifier.buildClassifier(data); m_classifiers.put(node.m_left.getString() + "|" + node.m_right.getString(), classifier); } else { classifier=(FilteredClassifier)m_classifiers.get(node.m_left.getString() + "|" + node.m_right.getString()); } // Generate successors if (node.m_left.m_left != null) { RemoveWithValues rwv = new RemoveWithValues(); rwv.setInvertSelection(true); rwv.setNominalIndices(node.m_left.getString()); rwv.setAttributeIndex("" + (data.classIndex() + 1)); rwv.setInputFormat(data); Instances firstSubset = Filter.useFilter(data, rwv); buildClassifierForNode(node.m_left, firstSubset); } if (node.m_right.m_left != null) { RemoveWithValues rwv = new RemoveWithValues(); rwv.setInvertSelection(true); rwv.setNominalIndices(node.m_right.getString()); rwv.setAttributeIndex("" + (data.classIndex() + 1)); rwv.setInputFormat(data); Instances secondSubset = Filter.useFilter(data, rwv); buildClassifierForNode(node.m_right, secondSubset); } } } /** * Predicts the class distribution for a given instance * * @param inst the (multi-class) instance to be classified * @return the class distribution * @throws Exception if computing fails */ public double[] distributionForInstance(Instance inst) throws Exception { return distributionForInstance(inst, m_ndtree); } /** * Predicts the class distribution for a given instance * * @param inst the (multi-class) instance to be classified * @param node the node to do get the distribution for * @return the class distribution * @throws Exception if computing fails */ protected double[] distributionForInstance(Instance inst, NDTree node) throws Exception { double[] newDist = new double[inst.numClasses()]; if (node.m_left == null) { newDist[node.getIndices()[0]] = 1.0; return newDist; } else { Classifier classifier = (Classifier)m_classifiers.get(node.m_left.getString() + "|" + node.m_right.getString()); double[] leftDist = distributionForInstance(inst, node.m_left); double[] rightDist = distributionForInstance(inst, node.m_right); double[] dist = classifier.distributionForInstance(inst); for (int i = 0; i < inst.numClasses(); i++) { if (node.m_right.contains(i)) { newDist[i] = dist[1] * rightDist[i]; } else { newDist[i] = dist[0] * leftDist[i]; } } return newDist; } } /** * Outputs the classifier as a string. * * @return a string representation of the classifier */ public String toString() { if (m_classifiers == null) { return "ND: No model built yet."; } StringBuffer text = new StringBuffer(); text.append("ND\n\n"); m_ndtree.toString(text, new int[1], 0); return text.toString(); } /** * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "A meta classifier for handling multi-class datasets with 2-class " + "classifiers by building a random tree structure.\n\n" + "For more info, check\n\n" + getTechnicalInformation().toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new ND(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy