All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.supportVector.MIPolyKernel Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * MIPolyKernel.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi.supportVector;

import weka.classifiers.functions.supportVector.PolyKernel;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.RevisionUtils;
import weka.core.Capabilities.Capability;

/**
 
 * The polynomial kernel : K(x, y) = <x, y>^p or K(x, y) = (<x, y>+1)^p
 * 

* * Valid options are:

* *

 -D
 *  Enables debugging output (if available) to be printed.
 *  (default: off)
* *
 -no-checks
 *  Turns off all checks - use with caution!
 *  (default: checks on)
* *
 -C <num>
 *  The size of the cache (a prime number), 0 for full cache and 
 *  -1 to turn it off.
 *  (default: 250007)
* *
 -E <num>
 *  The Exponent to use.
 *  (default: 1.0)
* *
 -L
 *  Use lower-order terms.
 *  (default: no)
* * * @author Eibe Frank ([email protected]) * @author Shane Legg ([email protected]) (sparse vector code) * @author Stuart Inglis ([email protected]) (sparse vector code) * @author Lin Dong ([email protected]) (MIkernel) * @version $Revision: 10036 $ */ public class MIPolyKernel extends PolyKernel implements MultiInstanceCapabilitiesHandler { /** for serialiation */ private static final long serialVersionUID = 7926421479341051777L; /** * default constructor - does nothing. */ public MIPolyKernel() { super(); } /** * Creates a new MIPolyKernel instance. * * @param data the training dataset used. * @param cacheSize the size of the cache (a prime number) * @param exponent the exponent to use * @param lowerOrder whether to use lower-order terms * @throws Exception if something goes wrong */ public MIPolyKernel(Instances data, int cacheSize, double exponent, boolean lowerOrder) throws Exception { super(data, cacheSize, exponent, lowerOrder); } /** * * @param id1 the index of instance 1 * @param id2 the index of instance 2 * @param inst1 the instance 1 object * @return the dot product * @throws Exception if something goes wrong */ protected double evaluate(int id1, int id2, Instance inst1) throws Exception { double result, res; Instances data1= new Instances(inst1.relationalValue(1)); Instances data2; if(id1==id2) data2= new Instances(data1); else data2 = new Instances (m_data.instance(id2).relationalValue(1)); res=0; for(int i=0; i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy