weka.classifiers.misc.SerializedClassifier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* SerializedClassifier.java
* Copyright (C) 2007 University of Waikato, Hamilton, New Zealand
*/
package weka.classifiers.misc;
import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.SerializationHelper;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import java.io.File;
import java.util.Enumeration;
import java.util.Vector;
/**
* A wrapper around a serialized classifier model. This classifier loads a serialized models and uses it to make predictions.
*
* Warning: since the serialized model doesn't get changed, cross-validation cannot bet used with this classifier.
*
*
* Valid options are:
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -model <filename>
* The file containing the serialized model.
* (required)
*
*
* @author fracpete (fracpete at waikato dot ac dot nz)
* @version $Revision: 7560 $
*/
public class SerializedClassifier
extends Classifier {
/** for serialization */
private static final long serialVersionUID = 4599593909947628642L;
/** the serialized classifier model used for making predictions */
protected transient Classifier m_Model = null;
/** the file where the serialized model is stored */
protected File m_ModelFile = new File(System.getProperty("user.dir"));
/**
* Returns a string describing classifier
*
* @return a description suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return
"A wrapper around a serialized classifier model. This classifier loads "
+ "a serialized models and uses it to make predictions.\n\n"
+ "Warning: since the serialized model doesn't get changed, cross-validation "
+ "cannot bet used with this classifier.";
}
/**
* Gets an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions(){
Vector result;
Enumeration enm;
result = new Vector();
enm = super.listOptions();
while (enm.hasMoreElements())
result.addElement(enm.nextElement());
result.addElement(new Option(
"\tThe file containing the serialized model.\n"
+ "\t(required)",
"model", 1, "-model "));
return result.elements();
}
/**
* returns the options of the current setup
*
* @return the current options
*/
public String[] getOptions(){
int i;
Vector result;
String[] options;
result = new Vector();
options = super.getOptions();
for (i = 0; i < options.length; i++)
result.add(options[i]);
result.add("-model");
result.add("" + getModelFile());
return (String[]) result.toArray(new String[result.size()]);
}
/**
* Parses the options for this object.
*
* Valid options are:
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -model <filename>
* The file containing the serialized model.
* (required)
*
*
* @param options the options to use
* @throws Exception if setting of options fails
*/
public void setOptions(String[] options) throws Exception {
String tmpStr;
super.setOptions(options);
tmpStr = Utils.getOption("model", options);
if (tmpStr.length() != 0)
setModelFile(new File(tmpStr));
else
setModelFile(new File(System.getProperty("user.dir")));
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String modelFileTipText() {
return "The serialized classifier model to use for predictions.";
}
/**
* Gets the file containing the serialized model.
*
* @return the file.
*/
public File getModelFile() {
return m_ModelFile;
}
/**
* Sets the file containing the serialized model.
*
* @param value the file.
*/
public void setModelFile(File value) {
m_ModelFile = value;
if (value.exists() && value.isFile()) {
try {
initModel();
}
catch (Exception e) {
throw new IllegalArgumentException("Cannot load model from file '" + value + "': " + e);
}
}
}
/**
* Sets the fully built model to use, if one doesn't want to load a model
* from a file or already deserialized a model from somewhere else.
*
* @param value the built model
* @see #getCurrentModel()
*/
public void setModel(Classifier value) {
m_Model = value;
}
/**
* Gets the currently loaded model (can be null). Call buildClassifier method
* to load model from file.
*
* @return the current model
* @see #setModel(Classifier)
*/
public Classifier getCurrentModel() {
return m_Model;
}
/**
* loads the serialized model if necessary, throws an Exception if the
* derserialization fails. Always propagates the current debug flag.
*
* @throws Exception if deserialization fails
*/
protected void initModel() throws Exception {
if (m_Model == null)
m_Model = (Classifier) SerializationHelper.read(m_ModelFile.getAbsolutePath());
m_Model.setDebug(getDebug());
}
/**
* Returns default capabilities of the base classifier.
*
* @return the capabilities of the base classifier
*/
public Capabilities getCapabilities() {
Capabilities result;
// init model if necessary
if (m_ModelFile != null && m_ModelFile.exists() && m_ModelFile.isFile()) {
try {
initModel();
}
catch (Exception e) {
System.err.println(e);
}
}
if (m_Model != null) {
result = m_Model.getCapabilities();
} else {
result = new Capabilities(this);
result.disableAll();
}
// set dependencies
for (Capability cap: Capability.values())
result.enableDependency(cap);
result.setOwner(this);
return result;
}
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param instance the instance to be classified
* @return preedicted class probability distribution
* @throws Exception if distribution can't be computed successfully
*/
public double[] distributionForInstance(Instance instance) throws Exception {
double[] result;
// init model if necessary
initModel();
result = m_Model.distributionForInstance(instance);
return result;
}
/**
* loads only the serialized classifier
*
* @param data the training instances
* @throws Exception if something goes wrong
*/
public void buildClassifier(Instances data) throws Exception {
// init model if necessary
initModel();
// can classifier handle the data?
getCapabilities().testWithFail(data);
}
/**
* Returns a string representation of the classifier
*
* @return the string representation of the classifier
*/
public String toString() {
StringBuffer result;
if (m_Model == null) {
result = new StringBuffer("No model loaded yet.");
}
else {
result = new StringBuffer();
result.append("SerializedClassifier\n");
result.append("====================\n\n");
result.append("File: " + getModelFile() + "\n\n");
result.append(m_Model.toString());
}
return result.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 7560 $");
}
/**
* Runs the classifier with the given options
*
* @param args the commandline options
*/
public static void main(String[] args) {
runClassifier(new SerializedClassifier(), args);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy