weka.classifiers.rules.part.PruneableDecList Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* PruneableDecList.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.rules.part;
import weka.classifiers.trees.j48.Distribution;
import weka.classifiers.trees.j48.ModelSelection;
import weka.classifiers.trees.j48.NoSplit;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for handling a partial tree structure that
* can be pruned using a pruning set.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 1.10 $
*/
public class PruneableDecList
extends ClassifierDecList {
/** for serialization */
private static final long serialVersionUID = -7228103346297172921L;
/**
* Constructor for pruneable partial tree structure.
*
* @param toSelectLocModel selection method for local splitting model
* @param minNum minimum number of objects in leaf
*/
public PruneableDecList(ModelSelection toSelectLocModel,
int minNum) {
super(toSelectLocModel, minNum);
}
/**
* Method for building a pruned partial tree.
*
* @throws Exception if tree can't be built successfully
*/
public void buildRule(Instances train,
Instances test) throws Exception {
buildDecList(train, test, false);
cleanup(new Instances(train, 0));
}
/**
* Builds the partial tree with hold out set
*
* @throws Exception if something goes wrong
*/
public void buildDecList(Instances train, Instances test,
boolean leaf) throws Exception {
Instances [] localTrain,localTest;
int index,ind;
int i,j;
double sumOfWeights;
NoSplit noSplit;
m_train = null;
m_isLeaf = false;
m_isEmpty = false;
m_sons = null;
indeX = 0;
sumOfWeights = train.sumOfWeights();
noSplit = new NoSplit (new Distribution((Instances)train));
if (leaf)
m_localModel = noSplit;
else
m_localModel = m_toSelectModel.selectModel(train, test);
m_test = new Distribution(test, m_localModel);
if (m_localModel.numSubsets() > 1) {
localTrain = m_localModel.split(train);
localTest = m_localModel.split(test);
train = null;
test = null;
m_sons = new ClassifierDecList [m_localModel.numSubsets()];
i = 0;
do {
i++;
ind = chooseIndex();
if (ind == -1) {
for (j = 0; j < m_sons.length; j++)
if (m_sons[j] == null)
m_sons[j] = getNewDecList(localTrain[j],localTest[j],true);
if (i < 2) {
m_localModel = noSplit;
m_isLeaf = true;
m_sons = null;
if (Utils.eq(sumOfWeights,0))
m_isEmpty = true;
return;
}
ind = 0;
break;
} else
m_sons[ind] = getNewDecList(localTrain[ind],localTest[ind],false);
} while ((i < m_sons.length) && (m_sons[ind].m_isLeaf));
// Check if all successors are leaves
for (j = 0; j < m_sons.length; j++)
if ((m_sons[j] == null) || (!m_sons[j].m_isLeaf))
break;
if (j == m_sons.length) {
pruneEnd();
if (!m_isLeaf)
indeX = chooseLastIndex();
}else
indeX = chooseLastIndex();
}else{
m_isLeaf = true;
if (Utils.eq(sumOfWeights, 0))
m_isEmpty = true;
}
}
/**
* Returns a newly created tree.
*
* @param train train data
* @param test test data
* @param leaf
* @throws Exception if something goes wrong
*/
protected ClassifierDecList getNewDecList(Instances train, Instances test,
boolean leaf) throws Exception {
PruneableDecList newDecList =
new PruneableDecList(m_toSelectModel, m_minNumObj);
newDecList.buildDecList((Instances)train, test, leaf);
return newDecList;
}
/**
* Prunes the end of the rule.
*/
protected void pruneEnd() throws Exception {
double errorsLeaf, errorsTree;
errorsTree = errorsForTree();
errorsLeaf = errorsForLeaf();
if (Utils.smOrEq(errorsLeaf,errorsTree)){
m_isLeaf = true;
m_sons = null;
m_localModel = new NoSplit(localModel().distribution());
}
}
/**
* Computes error estimate for tree.
*/
private double errorsForTree() throws Exception {
Distribution test;
if (m_isLeaf)
return errorsForLeaf();
else {
double error = 0;
for (int i = 0; i < m_sons.length; i++)
if (Utils.eq(son(i).localModel().distribution().total(),0)) {
error += m_test.perBag(i)-
m_test.perClassPerBag(i,localModel().distribution().
maxClass());
} else
error += ((PruneableDecList)son(i)).errorsForTree();
return error;
}
}
/**
* Computes estimated errors for leaf.
*/
private double errorsForLeaf() throws Exception {
return m_test.total()-
m_test.perClass(localModel().distribution().maxClass());
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.10 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy