All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.BFTree Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * BFTree.java
 * Copyright (C) 2007 Haijian Shi
 *
 */

package weka.classifiers.trees;

import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableClassifier;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.matrix.Matrix;

import java.util.Arrays;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 
 * Class for building a best-first decision tree classifier. This class uses binary split for both nominal and numeric attributes. For missing values, the method of 'fractional' instances is used.
*
* For more information, see:
*
* Haijian Shi (2007). Best-first decision tree learning. Hamilton, NZ.
*
* Jerome Friedman, Trevor Hastie, Robert Tibshirani (2000). Additive logistic regression : A statistical view of boosting. Annals of statistics. 28(2):337-407. *

* * BibTeX: *

 * @mastersthesis{Shi2007,
 *    address = {Hamilton, NZ},
 *    author = {Haijian Shi},
 *    note = {COMP594},
 *    school = {University of Waikato},
 *    title = {Best-first decision tree learning},
 *    year = {2007}
 * }
 * 
 * @article{Friedman2000,
 *    author = {Jerome Friedman and Trevor Hastie and Robert Tibshirani},
 *    journal = {Annals of statistics},
 *    number = {2},
 *    pages = {337-407},
 *    title = {Additive logistic regression : A statistical view of boosting},
 *    volume = {28},
 *    year = {2000},
 *    ISSN = {0090-5364}
 * }
 * 
*

* * Valid options are:

* *

 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -P <UNPRUNED|POSTPRUNED|PREPRUNED>
 *  The pruning strategy.
 *  (default: POSTPRUNED)
* *
 -M <min no>
 *  The minimal number of instances at the terminal nodes.
 *  (default 2)
* *
 -N <num folds>
 *  The number of folds used in the pruning.
 *  (default 5)
* *
 -H
 *  Don't use heuristic search for nominal attributes in multi-class
 *  problem (default yes).
 * 
* *
 -G
 *  Don't use Gini index for splitting (default yes),
 *  if not information is used.
* *
 -R
 *  Don't use error rate in internal cross-validation (default yes), 
 *  but root mean squared error.
* *
 -A
 *  Use the 1 SE rule to make pruning decision.
 *  (default no).
* *
 -C
 *  Percentage of training data size (0-1]
 *  (default 1).
* * * @author Haijian Shi ([email protected]) * @version $Revision: 6947 $ */ public class BFTree extends RandomizableClassifier implements AdditionalMeasureProducer, TechnicalInformationHandler { /** For serialization. */ private static final long serialVersionUID = -7035607375962528217L; /** pruning strategy: un-pruned */ public static final int PRUNING_UNPRUNED = 0; /** pruning strategy: post-pruning */ public static final int PRUNING_POSTPRUNING = 1; /** pruning strategy: pre-pruning */ public static final int PRUNING_PREPRUNING = 2; /** pruning strategy */ public static final Tag[] TAGS_PRUNING = { new Tag(PRUNING_UNPRUNED, "unpruned", "Un-pruned"), new Tag(PRUNING_POSTPRUNING, "postpruned", "Post-pruning"), new Tag(PRUNING_PREPRUNING, "prepruned", "Pre-pruning") }; /** the pruning strategy */ protected int m_PruningStrategy = PRUNING_POSTPRUNING; /** Successor nodes. */ protected BFTree[] m_Successors; /** Attribute used for splitting. */ protected Attribute m_Attribute; /** Split point (for numeric attributes). */ protected double m_SplitValue; /** Split subset (for nominal attributes). */ protected String m_SplitString; /** Class value for a node. */ protected double m_ClassValue; /** Class attribute of a dataset. */ protected Attribute m_ClassAttribute; /** Minimum number of instances at leaf nodes. */ protected int m_minNumObj = 2; /** Number of folds for the pruning. */ protected int m_numFoldsPruning = 5; /** If the ndoe is leaf node. */ protected boolean m_isLeaf; /** Number of expansions. */ protected static int m_Expansion; /** Fixed number of expansions (if no pruning method is used, its value is -1. Otherwise, * its value is gotten from internal cross-validation). */ protected int m_FixedExpansion = -1; /** If use huristic search for binary split (default true). Note even if its value is true, it is only * used when the number of values of a nominal attribute is larger than 4. */ protected boolean m_Heuristic = true; /** If use Gini index as the splitting criterion - default (if not, information is used). */ protected boolean m_UseGini = true; /** If use error rate in internal cross-validation to fix the number of expansions - default * (if not, root mean squared error is used). */ protected boolean m_UseErrorRate = true; /** If use the 1SE rule to make the decision. */ protected boolean m_UseOneSE = false; /** Class distributions. */ protected double[] m_Distribution; /** Branch proportions. */ protected double[] m_Props; /** Sorted indices. */ protected int[][] m_SortedIndices; /** Sorted weights. */ protected double[][] m_Weights; /** Distributions of each attribute for two successor nodes. */ protected double[][][] m_Dists; /** Class probabilities. */ protected double[] m_ClassProbs; /** Total weights. */ protected double m_TotalWeight; /** The training data size (0-1). Default 1. */ protected double m_SizePer = 1; /** * Returns a string describing classifier * * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Class for building a best-first decision tree classifier. " + "This class uses binary split for both nominal and numeric attributes. " + "For missing values, the method of 'fractional' instances is used.\n\n" + "For more information, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.MASTERSTHESIS); result.setValue(Field.AUTHOR, "Haijian Shi"); result.setValue(Field.YEAR, "2007"); result.setValue(Field.TITLE, "Best-first decision tree learning"); result.setValue(Field.SCHOOL, "University of Waikato"); result.setValue(Field.ADDRESS, "Hamilton, NZ"); result.setValue(Field.NOTE, "COMP594"); additional = result.add(Type.ARTICLE); additional.setValue(Field.AUTHOR, "Jerome Friedman and Trevor Hastie and Robert Tibshirani"); additional.setValue(Field.YEAR, "2000"); additional.setValue(Field.TITLE, "Additive logistic regression : A statistical view of boosting"); additional.setValue(Field.JOURNAL, "Annals of statistics"); additional.setValue(Field.VOLUME, "28"); additional.setValue(Field.NUMBER, "2"); additional.setValue(Field.PAGES, "337-407"); additional.setValue(Field.ISSN, "0090-5364"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); return result; } /** * Method for building a BestFirst decision tree classifier. * * @param data set of instances serving as training data * @throws Exception if decision tree cannot be built successfully */ public void buildClassifier(Instances data) throws Exception { getCapabilities().testWithFail(data); data = new Instances(data); data.deleteWithMissingClass(); // build an unpruned tree if (m_PruningStrategy == PRUNING_UNPRUNED) { // calculate sorted indices, weights and initial class probabilities int[][] sortedIndices = new int[data.numAttributes()][0]; double[][] weights = new double[data.numAttributes()][0]; double[] classProbs = new double[data.numClasses()]; double totalWeight = computeSortedInfo(data,sortedIndices, weights,classProbs); // Compute information of the best split for this node (include split attribute, // split value and gini gain (or information gain)). At the same time, compute // variables dists, props and totalSubsetWeights. double[][][] dists = new double[data.numAttributes()][2][data.numClasses()]; double[][] props = new double[data.numAttributes()][2]; double[][] totalSubsetWeights = new double[data.numAttributes()][2]; FastVector nodeInfo = computeSplitInfo(this, data, sortedIndices, weights, dists, props, totalSubsetWeights, m_Heuristic, m_UseGini); // add the node (with all split info) into BestFirstElements FastVector BestFirstElements = new FastVector(); BestFirstElements.addElement(nodeInfo); // Make the best-first decision tree. int attIndex = ((Attribute)nodeInfo.elementAt(1)).index(); m_Expansion = 0; makeTree(BestFirstElements, data, sortedIndices, weights, dists, classProbs, totalWeight, props[attIndex] ,m_minNumObj, m_Heuristic, m_UseGini, m_FixedExpansion); return; } // the following code is for pre-pruning and post-pruning methods // Compute train data, test data, sorted indices, sorted weights, total weights, // class probabilities, class distributions, branch proportions and total subset // weights for root nodes of each fold for prepruning and postpruning. int expansion = 0; Random random = new Random(m_Seed); Instances cvData = new Instances(data); cvData.randomize(random); cvData = new Instances(cvData,0,(int)(cvData.numInstances()*m_SizePer)-1); cvData.stratify(m_numFoldsPruning); Instances[] train = new Instances[m_numFoldsPruning]; Instances[] test = new Instances[m_numFoldsPruning]; FastVector[] parallelBFElements = new FastVector [m_numFoldsPruning]; BFTree[] m_roots = new BFTree[m_numFoldsPruning]; int[][][] sortedIndices = new int[m_numFoldsPruning][data.numAttributes()][0]; double[][][] weights = new double[m_numFoldsPruning][data.numAttributes()][0]; double[][] classProbs = new double[m_numFoldsPruning][data.numClasses()]; double[] totalWeight = new double[m_numFoldsPruning]; double[][][][] dists = new double[m_numFoldsPruning][data.numAttributes()][2][data.numClasses()]; double[][][] props = new double[m_numFoldsPruning][data.numAttributes()][2]; double[][][] totalSubsetWeights = new double[m_numFoldsPruning][data.numAttributes()][2]; FastVector[] nodeInfo = new FastVector[m_numFoldsPruning]; for (int i = 0; i < m_numFoldsPruning; i++) { train[i] = cvData.trainCV(m_numFoldsPruning, i); test[i] = cvData.testCV(m_numFoldsPruning, i); parallelBFElements[i] = new FastVector(); m_roots[i] = new BFTree(); // calculate sorted indices, weights, initial class counts and total weights for each training data totalWeight[i] = computeSortedInfo(train[i],sortedIndices[i], weights[i], classProbs[i]); // compute information of the best split for this node (include split attribute, // split value and gini gain (or information gain)) in this fold nodeInfo[i] = computeSplitInfo(m_roots[i], train[i], sortedIndices[i], weights[i], dists[i], props[i], totalSubsetWeights[i], m_Heuristic, m_UseGini); // compute information for root nodes int attIndex = ((Attribute)nodeInfo[i].elementAt(1)).index(); m_roots[i].m_SortedIndices = new int[sortedIndices[i].length][0]; m_roots[i].m_Weights = new double[weights[i].length][0]; m_roots[i].m_Dists = new double[dists[i].length][0][0]; m_roots[i].m_ClassProbs = new double[classProbs[i].length]; m_roots[i].m_Distribution = new double[classProbs[i].length]; m_roots[i].m_Props = new double[2]; for (int j=0; jpreviousError) break; } else { if (expansionError < minError) { minError = expansionError; minExpansion = expansion; } if (currentError>previousError) { double oneSE = Math.sqrt(minError*(1-minError)/ data.numInstances()); if (currentError > minError + oneSE) { break; } } } expansion ++; previousError = currentError; } if (!m_UseOneSE) expansion = expansion - 1; else { double oneSE = Math.sqrt(minError*(1-minError)/data.numInstances()); for (int i=0; i=m_numFoldsPruning/2) { expansion = i; break; } } } } // build a postpruned tree else { FastVector[] modelError = new FastVector[m_numFoldsPruning]; // calculate error of each expansion for each fold for (int i = 0; i < m_numFoldsPruning; i++) { modelError[i] = new FastVector(); m_roots[i].m_isLeaf = true; Evaluation eval = new Evaluation(test[i]); eval.evaluateModel(m_roots[i], test[i]); double error; if (m_UseErrorRate) error = eval.errorRate(); else error = eval.rootMeanSquaredError(); modelError[i].addElement(new Double(error)); m_roots[i].m_isLeaf = false; BFTree nodeToSplit = (BFTree) (((FastVector)(parallelBFElements[i].elementAt(0))).elementAt(0)); m_roots[i].makeTree(parallelBFElements[i], m_roots[i], train[i], test[i], modelError[i],nodeToSplit.m_SortedIndices, nodeToSplit.m_Weights, nodeToSplit.m_Dists, nodeToSplit.m_ClassProbs, nodeToSplit.m_TotalWeight, nodeToSplit.m_Props, m_minNumObj, m_Heuristic, m_UseGini, m_UseErrorRate); m_roots[i] = null; } // find the expansion with minimal error rate double minError = Double.MAX_VALUE; int maxExpansion = modelError[0].size(); for (int i=1; imaxExpansion) maxExpansion = modelError[i].size(); } double[] error = new double[maxExpansion]; int[] counts = new int[maxExpansion]; for (int i=0; i=m_numFoldsPruning/2) { minError = error[i]; expansion = i; } } // the 1 SE rule choosen if (m_UseOneSE) { double oneSE = Math.sqrt(minError*(1-minError)/ data.numInstances()); for (int i=0; i=m_numFoldsPruning/2) { expansion = i; break; } } } } // make tree on all data based on the expansion caculated // from cross-validation // calculate sorted indices, weights and initial class counts int[][] prune_sortedIndices = new int[data.numAttributes()][0]; double[][] prune_weights = new double[data.numAttributes()][0]; double[] prune_classProbs = new double[data.numClasses()]; double prune_totalWeight = computeSortedInfo(data, prune_sortedIndices, prune_weights, prune_classProbs); // compute information of the best split for this node (include split attribute, // split value and gini gain) double[][][] prune_dists = new double[data.numAttributes()][2][data.numClasses()]; double[][] prune_props = new double[data.numAttributes()][2]; double[][] prune_totalSubsetWeights = new double[data.numAttributes()][2]; FastVector prune_nodeInfo = computeSplitInfo(this, data, prune_sortedIndices, prune_weights, prune_dists, prune_props, prune_totalSubsetWeights, m_Heuristic,m_UseGini); // add the root node (with its split info) to BestFirstElements FastVector BestFirstElements = new FastVector(); BestFirstElements.addElement(prune_nodeInfo); int attIndex = ((Attribute)prune_nodeInfo.elementAt(1)).index(); m_Expansion = 0; makeTree(BestFirstElements, data, prune_sortedIndices, prune_weights, prune_dists, prune_classProbs, prune_totalWeight, prune_props[attIndex] ,m_minNumObj, m_Heuristic, m_UseGini, expansion); } /** * Recursively build a best-first decision tree. * Method for building a Best-First tree for a given number of expansions. * preExpasion is -1 means that no expansion is specified (just for a * tree without any pruning method). Pre-pruning and post-pruning methods also * use this method to build the final tree on all training data based on the * expansion calculated from internal cross-validation. * * @param BestFirstElements list to store BFTree nodes * @param data training data * @param sortedIndices sorted indices of the instances * @param weights weights of the instances * @param dists class distributions for each attribute * @param classProbs class probabilities of this node * @param totalWeight total weight of this node (note if the node * can not split, this value is not calculated.) * @param branchProps proportions of two subbranches * @param minNumObj minimal number of instances at leaf nodes * @param useHeuristic if use heuristic search for nominal attributes * in multi-class problem * @param useGini if use Gini index as splitting criterion * @param preExpansion the number of expansions the tree to be expanded * @throws Exception if something goes wrong */ protected void makeTree(FastVector BestFirstElements,Instances data, int[][] sortedIndices, double[][] weights, double[][][] dists, double[] classProbs, double totalWeight, double[] branchProps, int minNumObj, boolean useHeuristic, boolean useGini, int preExpansion) throws Exception { if (BestFirstElements.size()==0) return; /////////////////////////////////////////////////////////////////////// // All information about the node to split (the first BestFirst object in // BestFirstElements) FastVector firstElement = (FastVector)BestFirstElements.elementAt(0); // split attribute Attribute att = (Attribute)firstElement.elementAt(1); // info of split value or split string double splitValue = Double.NaN; String splitStr = null; if (att.isNumeric()) splitValue = ((Double)firstElement.elementAt(2)).doubleValue(); else { splitStr=((String)firstElement.elementAt(2)).toString(); } // the best gini gain or information gain of this node double gain = ((Double)firstElement.elementAt(3)).doubleValue(); /////////////////////////////////////////////////////////////////////// if (m_ClassProbs==null) { m_SortedIndices = new int[sortedIndices.length][0]; m_Weights = new double[weights.length][0]; m_Dists = new double[dists.length][0][0]; m_ClassProbs = new double[classProbs.length]; m_Distribution = new double[classProbs.length]; m_Props = new double[2]; for (int i=0; i=nodeGain) { BestFirstElements.insertElementAt(splitInfo, j); break; } } } } } } /** * Compute sorted indices, weights and class probabilities for a given * dataset. Return total weights of the data at the node. * * @param data training data * @param sortedIndices sorted indices of instances at the node * @param weights weights of instances at the node * @param classProbs class probabilities at the node * @return total weights of instances at the node * @throws Exception if something goes wrong */ protected double computeSortedInfo(Instances data, int[][] sortedIndices, double[][] weights, double[] classProbs) throws Exception { // Create array of sorted indices and weights double[] vals = new double[data.numInstances()]; for (int j = 0; j < data.numAttributes(); j++) { if (j==data.classIndex()) continue; weights[j] = new double[data.numInstances()]; if (data.attribute(j).isNominal()) { // Handling nominal attributes. Putting indices of // instances with missing values at the end. sortedIndices[j] = new int[data.numInstances()]; int count = 0; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (!inst.isMissing(j)) { sortedIndices[j][count] = i; weights[j][count] = inst.weight(); count++; } } for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (inst.isMissing(j)) { sortedIndices[j][count] = i; weights[j][count] = inst.weight(); count++; } } } else { // Sorted indices are computed for numeric attributes // missing values instances are put to end (through Utils.sort() method) for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); vals[i] = inst.value(j); } sortedIndices[j] = Utils.sort(vals); for (int i = 0; i < data.numInstances(); i++) { weights[j][i] = data.instance(sortedIndices[j][i]).weight(); } } } // Compute initial class counts and total weight double totalWeight = 0; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); classProbs[(int)inst.classValue()] += inst.weight(); totalWeight += inst.weight(); } return totalWeight; } /** * Compute the best splitting attribute, split point or subset and the best * gini gain or iformation gain for a given dataset. * * @param node node to be split * @param data training data * @param sortedIndices sorted indices of the instances * @param weights weights of the instances * @param dists class distributions for each attribute * @param props proportions of two branches * @param totalSubsetWeights total weight of two subsets * @param useHeuristic if use heuristic search for nominal attributes * in multi-class problem * @param useGini if use Gini index as splitting criterion * @return split information about the node * @throws Exception if something is wrong */ protected FastVector computeSplitInfo(BFTree node, Instances data, int[][] sortedIndices, double[][] weights, double[][][] dists, double[][] props, double[][] totalSubsetWeights, boolean useHeuristic, boolean useGini) throws Exception { double[] splits = new double[data.numAttributes()]; String[] splitString = new String[data.numAttributes()]; double[] gains = new double[data.numAttributes()]; for (int i = 0; i < data.numAttributes(); i++) { if (i==data.classIndex()) continue; Attribute att = data.attribute(i); if (att.isNumeric()) { // numeric attribute splits[i] = numericDistribution(props, dists, att, sortedIndices[i], weights[i], totalSubsetWeights, gains, data, useGini); } else { // nominal attribute splitString[i] = nominalDistribution(props, dists, att, sortedIndices[i], weights[i], totalSubsetWeights, gains, data, useHeuristic, useGini); } } int index = Utils.maxIndex(gains); double mBestGain = gains[index]; Attribute att = data.attribute(index); double mValue =Double.NaN; String mString = null; if (att.isNumeric()) mValue= splits[index]; else { mString = splitString[index]; if (mString==null) mString = ""; } // split information FastVector splitInfo = new FastVector(); splitInfo.addElement(node); splitInfo.addElement(att); if (att.isNumeric()) splitInfo.addElement(new Double(mValue)); else splitInfo.addElement(mString); splitInfo.addElement(new Double(mBestGain)); return splitInfo; } /** * Compute distributions, proportions and total weights of two successor nodes for * a given numeric attribute. * * @param props proportions of each two branches for each attribute * @param dists class distributions of two branches for each attribute * @param att numeric att split on * @param sortedIndices sorted indices of instances for the attirubte * @param weights weights of instances for the attirbute * @param subsetWeights total weight of two branches split based on the attribute * @param gains Gini gains or information gains for each attribute * @param data training instances * @param useGini if use Gini index as splitting criterion * @return Gini gain or information gain for the given attribute * @throws Exception if something goes wrong */ protected double numericDistribution(double[][] props, double[][][] dists, Attribute att, int[] sortedIndices, double[] weights, double[][] subsetWeights, double[] gains, Instances data, boolean useGini) throws Exception { double splitPoint = Double.NaN; double[][] dist = null; int numClasses = data.numClasses(); int i; // differ instances with or without missing values double[][] currDist = new double[2][numClasses]; dist = new double[2][numClasses]; // Move all instances without missing values into second subset double[] parentDist = new double[numClasses]; int missingStart = 0; for (int j = 0; j < sortedIndices.length; j++) { Instance inst = data.instance(sortedIndices[j]); if (!inst.isMissing(att)) { missingStart ++; currDist[1][(int)inst.classValue()] += weights[j]; } parentDist[(int)inst.classValue()] += weights[j]; } System.arraycopy(currDist[1], 0, dist[1], 0, dist[1].length); // Try all possible split points double currSplit = data.instance(sortedIndices[0]).value(att); double currGain; double bestGain = -Double.MAX_VALUE; for (i = 0; i < sortedIndices.length; i++) { Instance inst = data.instance(sortedIndices[i]); if (inst.isMissing(att)) { break; } if (inst.value(att) > currSplit) { double[][] tempDist = new double[2][numClasses]; for (int k=0; k<2; k++) { //tempDist[k] = currDist[k]; System.arraycopy(currDist[k], 0, tempDist[k], 0, tempDist[k].length); } double[] tempProps = new double[2]; for (int k=0; k<2; k++) { tempProps[k] = Utils.sum(tempDist[k]); } if (Utils.sum(tempProps) !=0) Utils.normalize(tempProps); // split missing values int index = missingStart; while (index < sortedIndices.length) { Instance insta = data.instance(sortedIndices[index]); for (int j = 0; j < 2; j++) { tempDist[j][(int)insta.classValue()] += tempProps[j] * weights[index]; } index++; } if (useGini) currGain = computeGiniGain(parentDist,tempDist); else currGain = computeInfoGain(parentDist,tempDist); if (currGain > bestGain) { bestGain = currGain; // clean split point splitPoint = Math.rint((inst.value(att) + currSplit)/2.0*100000)/100000.0; for (int j = 0; j < currDist.length; j++) { System.arraycopy(tempDist[j], 0, dist[j], 0, dist[j].length); } } } currSplit = inst.value(att); currDist[0][(int)inst.classValue()] += weights[i]; currDist[1][(int)inst.classValue()] -= weights[i]; } // Compute weights int attIndex = att.index(); props[attIndex] = new double[2]; for (int k = 0; k < 2; k++) { props[attIndex][k] = Utils.sum(dist[k]); } if (Utils.sum(props[attIndex]) != 0) Utils.normalize(props[attIndex]); // Compute subset weights subsetWeights[attIndex] = new double[2]; for (int j = 0; j < 2; j++) { subsetWeights[attIndex][j] += Utils.sum(dist[j]); } // clean gain gains[attIndex] = Math.rint(bestGain*10000000)/10000000.0; dists[attIndex] = dist; return splitPoint; } /** * Compute distributions, proportions and total weights of two successor * nodes for a given nominal attribute. * * @param props proportions of each two branches for each attribute * @param dists class distributions of two branches for each attribute * @param att numeric att split on * @param sortedIndices sorted indices of instances for the attirubte * @param weights weights of instances for the attirbute * @param subsetWeights total weight of two branches split based on the attribute * @param gains Gini gains for each attribute * @param data training instances * @param useHeuristic if use heuristic search * @param useGini if use Gini index as splitting criterion * @return Gini gain for the given attribute * @throws Exception if something goes wrong */ protected String nominalDistribution(double[][] props, double[][][] dists, Attribute att, int[] sortedIndices, double[] weights, double[][] subsetWeights, double[] gains, Instances data, boolean useHeuristic, boolean useGini) throws Exception { String[] values = new String[att.numValues()]; int numCat = values.length; // number of values of the attribute int numClasses = data.numClasses(); String bestSplitString = ""; double bestGain = -Double.MAX_VALUE; // class frequency for each value int[] classFreq = new int[numCat]; for (int j=0; jbestGain) { bestGain = currGain; bestSplitString = tempStr; for (int jj = 0; jj < 2; jj++) { System.arraycopy(tempDist[jj], 0, dist[jj], 0, dist[jj].length); } } } } // multi-class problems (exhaustive search) else if (!useHeuristic || nonEmpty<=4) { //else if (!useHeuristic || nonEmpty==2) { // Firstly, for attribute values which class frequency is not zero for (int i=0; i<(int)Math.pow(2,nonEmpty-1); i++) { String tempStr=""; currDist = new double[2][numClasses]; int mod; int bit10 = i; for (int j=nonEmpty-1; j>=0; j--) { mod = bit10%2; // convert from 10bit to 2bit if (mod==1) { if (tempStr=="") tempStr = "("+nonEmptyValues[j]+")"; else tempStr += "|" + "("+nonEmptyValues[j]+")"; } bit10 = bit10/2; } for (int j=0; jbestGain) { bestGain = currGain; bestSplitString = tempStr; for (int j = 0; j < 2; j++) { //dist[jj] = new double[currDist[jj].length]; System.arraycopy(tempDist[j], 0, dist[j], 0, dist[j].length); } } } } // huristic method to solve multi-classes problems else { // Firstly, for attribute values which class frequency is not zero int n = nonEmpty; int k = data.numClasses(); // number of classes of the data double[][] P = new double[n][k]; // class probability matrix int[] numInstancesValue = new int[n]; // number of instances for an attribute value double[] meanClass = new double[k]; // vector of mean class probability int numInstances = data.numInstances(); // total number of instances // initialize the vector of mean class probability for (int j=0; jlargest) { index=i; largest = eigenValues[i]; } } // calculate the first principle component double[] FPC = new double[k]; Matrix eigenVector = eigen.getV(); double[][] vectorArray = eigenVector.getArray(); for (int i=0; ibestGain) { bestGain = currGain; bestSplitString = tempStr; for (int jj = 0; jj < 2; jj++) { //dist[jj] = new double[currDist[jj].length]; System.arraycopy(tempDist[jj], 0, dist[jj], 0, dist[jj].length); } } } } // Compute weights int attIndex = att.index(); props[attIndex] = new double[2]; for (int k = 0; k < 2; k++) { props[attIndex][k] = Utils.sum(dist[k]); } if (!(Utils.sum(props[attIndex]) > 0)) { for (int k = 0; k < props[attIndex].length; k++) { props[attIndex][k] = 1.0 / (double)props[attIndex].length; } } else { Utils.normalize(props[attIndex]); } // Compute subset weights subsetWeights[attIndex] = new double[2]; for (int j = 0; j < 2; j++) { subsetWeights[attIndex][j] += Utils.sum(dist[j]); } // Then, for the attribute values that class frequency is 0, split it into the // most frequent branch for (int j=0; j=props[attIndex][1]) { if (bestSplitString=="") bestSplitString = "(" + emptyValues[j] + ")"; else bestSplitString += "|" + "(" + emptyValues[j] + ")"; } } // clean gain gains[attIndex] = Math.rint(bestGain*10000000)/10000000.0; dists[attIndex] = dist; return bestSplitString; } /** * Split data into two subsets and store sorted indices and weights for two * successor nodes. * * @param subsetIndices sorted indecis of instances for each attribute for two successor node * @param subsetWeights weights of instances for each attribute for two successor node * @param att attribute the split based on * @param splitPoint split point the split based on if att is numeric * @param splitStr split subset the split based on if att is nominal * @param sortedIndices sorted indices of the instances to be split * @param weights weights of the instances to bes split * @param data training data * @throws Exception if something goes wrong */ protected void splitData(int[][][] subsetIndices, double[][][] subsetWeights, Attribute att, double splitPoint, String splitStr, int[][] sortedIndices, double[][] weights, Instances data) throws Exception { int j; // For each attribute for (int i = 0; i < data.numAttributes(); i++) { if (i==data.classIndex()) continue; int[] num = new int[2]; for (int k = 0; k < 2; k++) { subsetIndices[k][i] = new int[sortedIndices[i].length]; subsetWeights[k][i] = new double[weights[i].length]; } for (j = 0; j < sortedIndices[i].length; j++) { Instance inst = data.instance(sortedIndices[i][j]); if (inst.isMissing(att)) { // Split instance up for (int k = 0; k < 2; k++) { if (m_Props[k] > 0) { subsetIndices[k][i][num[k]] = sortedIndices[i][j]; subsetWeights[k][i][num[k]] = m_Props[k] * weights[i][j]; num[k]++; } } } else { int subset; if (att.isNumeric()) { subset = (inst.value(att) < splitPoint) ? 0 : 1; } else { // nominal attribute if (splitStr.indexOf ("(" + att.value((int)inst.value(att.index()))+")")!=-1) { subset = 0; } else subset = 1; } subsetIndices[subset][i][num[subset]] = sortedIndices[i][j]; subsetWeights[subset][i][num[subset]] = weights[i][j]; num[subset]++; } } // Trim arrays for (int k = 0; k < 2; k++) { int[] copy = new int[num[k]]; System.arraycopy(subsetIndices[k][i], 0, copy, 0, num[k]); subsetIndices[k][i] = copy; double[] copyWeights = new double[num[k]]; System.arraycopy(subsetWeights[k][i], 0 ,copyWeights, 0, num[k]); subsetWeights[k][i] = copyWeights; } } } /** * Compute and return gini gain for given distributions of a node and its * successor nodes. * * @param parentDist class distributions of parent node * @param childDist class distributions of successor nodes * @return Gini gain computed */ protected double computeGiniGain(double[] parentDist, double[][] childDist) { double totalWeight = Utils.sum(parentDist); if (totalWeight==0) return 0; double leftWeight = Utils.sum(childDist[0]); double rightWeight = Utils.sum(childDist[1]); double parentGini = computeGini(parentDist, totalWeight); double leftGini = computeGini(childDist[0],leftWeight); double rightGini = computeGini(childDist[1], rightWeight); return parentGini - leftWeight/totalWeight*leftGini - rightWeight/totalWeight*rightGini; } /** * Compute and return gini index for a given distribution of a node. * * @param dist class distributions * @param total class distributions * @return Gini index of the class distributions */ protected double computeGini(double[] dist, double total) { if (total==0) return 0; double val = 0; for (int i=0; i= " + m_SplitValue); else text.append(m_Attribute.name() + "!=" + m_SplitString); } text.append(m_Successors[j].toString(level + 1)); } } return text.toString(); } /** * Compute size of the tree. * * @return size of the tree */ public int numNodes() { if (m_isLeaf) { return 1; } else { int size =1; for (int i=0;i")); result.addElement(new Option( "\tThe number of folds used in the pruning.\n" + "\t(default 5)", "N", 5, "-N ")); result.addElement(new Option( "\tDon't use heuristic search for nominal attributes in multi-class\n" + "\tproblem (default yes).\n", "H", 0, "-H")); result.addElement(new Option( "\tDon't use Gini index for splitting (default yes),\n" + "\tif not information is used.", "G", 0, "-G")); result.addElement(new Option( "\tDon't use error rate in internal cross-validation (default yes), \n" + "\tbut root mean squared error.", "R", 0, "-R")); result.addElement(new Option( "\tUse the 1 SE rule to make pruning decision.\n" + "\t(default no).", "A", 0, "-A")); result.addElement(new Option( "\tPercentage of training data size (0-1]\n" + "\t(default 1).", "C", 0, "-C")); return result.elements(); } /** * Parses the options for this object.

* * Valid options are:

* *

 -S <num>
   *  Random number seed.
   *  (default 1)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -P <UNPRUNED|POSTPRUNED|PREPRUNED>
   *  The pruning strategy.
   *  (default: POSTPRUNED)
* *
 -M <min no>
   *  The minimal number of instances at the terminal nodes.
   *  (default 2)
* *
 -N <num folds>
   *  The number of folds used in the pruning.
   *  (default 5)
* *
 -H
   *  Don't use heuristic search for nominal attributes in multi-class
   *  problem (default yes).
   * 
* *
 -G
   *  Don't use Gini index for splitting (default yes),
   *  if not information is used.
* *
 -R
   *  Don't use error rate in internal cross-validation (default yes), 
   *  but root mean squared error.
* *
 -A
   *  Use the 1 SE rule to make pruning decision.
   *  (default no).
* *
 -C
   *  Percentage of training data size (0-1]
   *  (default 1).
* * * @param options the options to use * @throws Exception if setting of options fails */ public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) setMinNumObj(Integer.parseInt(tmpStr)); else setMinNumObj(2); tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) setNumFoldsPruning(Integer.parseInt(tmpStr)); else setNumFoldsPruning(5); tmpStr = Utils.getOption('C', options); if (tmpStr.length()!=0) setSizePer(Double.parseDouble(tmpStr)); else setSizePer(1); tmpStr = Utils.getOption('P', options); if (tmpStr.length() != 0) setPruningStrategy(new SelectedTag(tmpStr, TAGS_PRUNING)); else setPruningStrategy(new SelectedTag(PRUNING_POSTPRUNING, TAGS_PRUNING)); setHeuristic(!Utils.getFlag('H',options)); setUseGini(!Utils.getFlag('G',options)); setUseErrorRate(!Utils.getFlag('R',options)); setUseOneSE(Utils.getFlag('A',options)); } /** * Gets the current settings of the Classifier. * * @return the current settings of the Classifier */ public String[] getOptions() { int i; Vector result; String[] options; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-M"); result.add("" + getMinNumObj()); result.add("-N"); result.add("" + getNumFoldsPruning()); if (!getHeuristic()) result.add("-H"); if (!getUseGini()) result.add("-G"); if (!getUseErrorRate()) result.add("-R"); if (getUseOneSE()) result.add("-A"); result.add("-C"); result.add("" + getSizePer()); result.add("-P"); result.add("" + getPruningStrategy()); return (String[]) result.toArray(new String[result.size()]); } /** * Return an enumeration of the measure names. * * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector result = new Vector(); result.addElement("measureTreeSize"); return result.elements(); } /** * Return number of tree size. * * @return number of tree size */ public double measureTreeSize() { return numNodes(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { return measureTreeSize(); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (Best-First)"); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String pruningStrategyTipText() { return "Sets the pruning strategy."; } /** * Sets the pruning strategy. * * @param value the strategy */ public void setPruningStrategy(SelectedTag value) { if (value.getTags() == TAGS_PRUNING) { m_PruningStrategy = value.getSelectedTag().getID(); } } /** * Gets the pruning strategy. * * @return the current strategy. */ public SelectedTag getPruningStrategy() { return new SelectedTag(m_PruningStrategy, TAGS_PRUNING); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNumObjTipText() { return "Set minimal number of instances at the terminal nodes."; } /** * Set minimal number of instances at the terminal nodes. * * @param value minimal number of instances at the terminal nodes */ public void setMinNumObj(int value) { m_minNumObj = value; } /** * Get minimal number of instances at the terminal nodes. * * @return minimal number of instances at the terminal nodes */ public int getMinNumObj() { return m_minNumObj; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldsPruningTipText() { return "Number of folds in internal cross-validation."; } /** * Set number of folds in internal cross-validation. * * @param value the number of folds */ public void setNumFoldsPruning(int value) { m_numFoldsPruning = value; } /** * Set number of folds in internal cross-validation. * * @return number of folds in internal cross-validation */ public int getNumFoldsPruning() { return m_numFoldsPruning; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui. */ public String heuristicTipText() { return "If heuristic search is used for binary split for nominal attributes."; } /** * Set if use heuristic search for nominal attributes in multi-class problems. * * @param value if use heuristic search for nominal attributes in * multi-class problems */ public void setHeuristic(boolean value) { m_Heuristic = value; } /** * Get if use heuristic search for nominal attributes in multi-class problems. * * @return if use heuristic search for nominal attributes in * multi-class problems */ public boolean getHeuristic() { return m_Heuristic; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui. */ public String useGiniTipText() { return "If true the Gini index is used for splitting criterion, otherwise the information is used."; } /** * Set if use Gini index as splitting criterion. * * @param value if use Gini index splitting criterion */ public void setUseGini(boolean value) { m_UseGini = value; } /** * Get if use Gini index as splitting criterion. * * @return if use Gini index as splitting criterion */ public boolean getUseGini() { return m_UseGini; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui. */ public String useErrorRateTipText() { return "If error rate is used as error estimate. if not, root mean squared error is used."; } /** * Set if use error rate in internal cross-validation. * * @param value if use error rate in internal cross-validation */ public void setUseErrorRate(boolean value) { m_UseErrorRate = value; } /** * Get if use error rate in internal cross-validation. * * @return if use error rate in internal cross-validation. */ public boolean getUseErrorRate() { return m_UseErrorRate; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui. */ public String useOneSETipText() { return "Use the 1SE rule to make pruning decision."; } /** * Set if use the 1SE rule to choose final model. * * @param value if use the 1SE rule to choose final model */ public void setUseOneSE(boolean value) { m_UseOneSE = value; } /** * Get if use the 1SE rule to choose final model. * * @return if use the 1SE rule to choose final model */ public boolean getUseOneSE() { return m_UseOneSE; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui. */ public String sizePerTipText() { return "The percentage of the training set size (0-1, 0 not included)."; } /** * Set training set size. * * @param value training set size */ public void setSizePer(double value) { if ((value <= 0) || (value > 1)) System.err.println( "The percentage of the training set size must be in range 0 to 1 " + "(0 not included) - ignored!"); else m_SizePer = value; } /** * Get training set size. * * @return training set size */ public double getSizePer() { return m_SizePer; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6947 $"); } /** * Main method. * * @param args the options for the classifier */ public static void main(String[] args) { runClassifier(new BFTree(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy