All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.M5P Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    M5P.java
 *    Copyright (C) 2001 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees;

import weka.classifiers.trees.m5.M5Base;
import weka.classifiers.trees.m5.Rule;
import weka.core.Drawable;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * M5Base. Implements base routines for generating M5 Model trees and rules
* The original algorithm M5 was invented by R. Quinlan and Yong Wang made improvements.
*
* For more information see:
*
* Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.
*
* Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997. *

* * BibTeX: *

 * @inproceedings{Quinlan1992,
 *    address = {Singapore},
 *    author = {Ross J. Quinlan},
 *    booktitle = {5th Australian Joint Conference on Artificial Intelligence},
 *    pages = {343-348},
 *    publisher = {World Scientific},
 *    title = {Learning with Continuous Classes},
 *    year = {1992}
 * }
 * 
 * @inproceedings{Wang1997,
 *    author = {Y. Wang and I. H. Witten},
 *    booktitle = {Poster papers of the 9th European Conference on Machine Learning},
 *    publisher = {Springer},
 *    title = {Induction of model trees for predicting continuous classes},
 *    year = {1997}
 * }
 * 
*

* * Valid options are:

* *

 -N
 *  Use unpruned tree/rules
* *
 -U
 *  Use unsmoothed predictions
* *
 -R
 *  Build regression tree/rule rather than a model tree/rule
* *
 -M <minimum number of instances>
 *  Set minimum number of instances per leaf
 *  (default 4)
* *
 -L
 *  Save instances at the nodes in
 *  the tree (for visualization purposes)
* * * @author Mark Hall * @version $Revision: 1.10 $ */ public class M5P extends M5Base implements Drawable { /** for serialization */ static final long serialVersionUID = -6118439039768244417L; /** * Creates a new M5P instance. */ public M5P() { super(); setGenerateRules(false); } /** * Returns the type of graph this classifier * represents. * @return Drawable.TREE */ public int graphType() { return Drawable.TREE; } /** * Return a dot style String describing the tree. * * @return a String value * @throws Exception if an error occurs */ public String graph() throws Exception { StringBuffer text = new StringBuffer(); text.append("digraph M5Tree {\n"); Rule temp = (Rule)m_ruleSet.elementAt(0); temp.topOfTree().graph(text); text.append("}\n"); return text.toString(); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String saveInstancesTipText() { return "Whether to save instance data at each node in the tree for " + "visualization purposes."; } /** * Set whether to save instance data at each node in the * tree for visualization purposes * * @param save a boolean value */ public void setSaveInstances(boolean save) { m_saveInstances = save; } /** * Get whether instance data is being save. * * @return a boolean value */ public boolean getSaveInstances() { return m_saveInstances; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Enumeration superOpts = super.listOptions(); Vector newVector = new Vector(); while (superOpts.hasMoreElements()) { newVector.addElement((Option)superOpts.nextElement()); } newVector.addElement(new Option("\tSave instances at the nodes in\n" +"\tthe tree (for visualization purposes)", "L", 0, "-L")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -N
   *  Use unpruned tree/rules
* *
 -U
   *  Use unsmoothed predictions
* *
 -R
   *  Build regression tree/rule rather than a model tree/rule
* *
 -M <minimum number of instances>
   *  Set minimum number of instances per leaf
   *  (default 4)
* *
 -L
   *  Save instances at the nodes in
   *  the tree (for visualization purposes)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setSaveInstances(Utils.getFlag('L', options)); super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String[] superOpts = super.getOptions(); String [] options = new String [superOpts.length+1]; int current = superOpts.length; for (int i = 0; i < current; i++) { options[i] = superOpts[i]; } if (getSaveInstances()) { options[current++] = "-L"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.10 $"); } /** * Main method by which this class can be tested * * @param args an array of options */ public static void main(String[] args) { runClassifier(new M5P(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy