All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.RandomTree Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    RandomTree.java
 *    Copyright (C) 2001-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.Classifier;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.ContingencyTables;
import weka.core.Drawable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Randomizable;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
  
 * Class for constructing a tree that considers K
 * randomly chosen attributes at each node. Performs no pruning. Also has an
 * option to allow estimation of class probabilities based on a hold-out set
 * (backfitting).
 * 

* * Valid options are: *

* *

 * -K <number of attributes>
 *  Number of attributes to randomly investigate. (default 0)
 *  (<0 = int(log_2(#predictors)+1)).
 * 
* *
 * -M <minimum number of instances>
 *  Set minimum number of instances per leaf.
 * 
* *
 * -S <num>
 *  Seed for random number generator.
 *  (default 1)
 * 
* *
 * -depth <num>
 *  The maximum depth of the tree, 0 for unlimited.
 *  (default 0)
 * 
* *
 * -N <num>
 *  Number of folds for backfitting (default 0, no backfitting).
 * 
* *
 * -U
 *  Allow unclassified instances.
 * 
* *
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* * * @author Eibe Frank ([email protected]) * @author Richard Kirkby ([email protected]) * @version $Revision: 10993 $ */ public class RandomTree extends Classifier implements OptionHandler, WeightedInstancesHandler, Randomizable, Drawable { /** for serialization */ static final long serialVersionUID = 8934314652175299374L; /** The Tree object */ protected Tree m_Tree = null; /** The header information. */ protected Instances m_Info = null; /** Minimum number of instances for leaf. */ protected double m_MinNum = 1.0; /** The number of attributes considered for a split. */ protected int m_KValue = 0; /** The random seed to use. */ protected int m_randomSeed = 1; /** The maximum depth of the tree (0 = unlimited) */ protected int m_MaxDepth = 0; /** Determines how much data is used for backfitting */ protected int m_NumFolds = 0; /** Whether unclassified instances are allowed */ protected boolean m_AllowUnclassifiedInstances = false; /** a ZeroR model in case no model can be built from the data */ protected Classifier m_zeroR; /** * Returns a string describing classifier * * @return a description suitable for displaying in the explorer/experimenter * gui */ public String globalInfo() { return "Class for constructing a tree that considers K randomly " + " chosen attributes at each node. Performs no pruning. Also has" + " an option to allow estimation of class probabilities based on" + " a hold-out set (backfitting)."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minNumTipText() { return "The minimum total weight of the instances in a leaf."; } /** * Get the value of MinNum. * * @return Value of MinNum. */ public double getMinNum() { return m_MinNum; } /** * Set the value of MinNum. * * @param newMinNum Value to assign to MinNum. */ public void setMinNum(double newMinNum) { m_MinNum = newMinNum; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String KValueTipText() { return "Sets the number of randomly chosen attributes. If 0, log_2(number_of_attributes) + 1 is used."; } /** * Get the value of K. * * @return Value of K. */ public int getKValue() { return m_KValue; } /** * Set the value of K. * * @param k Value to assign to K. */ public void setKValue(int k) { m_KValue = k; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String seedTipText() { return "The random number seed used for selecting attributes."; } /** * Set the seed for random number generation. * * @param seed the seed */ public void setSeed(int seed) { m_randomSeed = seed; } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ public int getSeed() { return m_randomSeed; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxDepthTipText() { return "The maximum depth of the tree, 0 for unlimited."; } /** * Get the maximum depth of trh tree, 0 for unlimited. * * @return the maximum depth. */ public int getMaxDepth() { return m_MaxDepth; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numFoldsTipText() { return "Determines the amount of data used for backfitting. One fold is used for " + "backfitting, the rest for growing the tree. (Default: 0, no backfitting)"; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public int getNumFolds() { return m_NumFolds; } /** * Set the value of NumFolds. * * @param newNumFolds Value to assign to NumFolds. */ public void setNumFolds(int newNumFolds) { m_NumFolds = newNumFolds; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String allowUnclassifiedInstancesTipText() { return "Whether to allow unclassified instances."; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public boolean getAllowUnclassifiedInstances() { return m_AllowUnclassifiedInstances; } /** * Set the value of AllowUnclassifiedInstances. * * @param newAllowUnclassifiedInstances Value to assign to * AllowUnclassifiedInstances. */ public void setAllowUnclassifiedInstances( boolean newAllowUnclassifiedInstances) { m_AllowUnclassifiedInstances = newAllowUnclassifiedInstances; } /** * Set the maximum depth of the tree, 0 for unlimited. * * @param value the maximum depth. */ public void setMaxDepth(int value) { m_MaxDepth = value; } /** * Lists the command-line options for this classifier. * * @return an enumeration over all possible options */ @Override public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option( "\tNumber of attributes to randomly investigate. (default 0)\n" + "\t(<0 = int(log_2(#predictors)+1)).", "K", 1, "-K ")); newVector.addElement(new Option( "\tSet minimum number of instances per leaf.", "M", 1, "-M ")); newVector.addElement(new Option("\tSeed for random number generator.\n" + "\t(default 1)", "S", 1, "-S ")); newVector .addElement(new Option( "\tThe maximum depth of the tree, 0 for unlimited.\n" + "\t(default 0)", "depth", 1, "-depth ")); newVector.addElement(new Option("\tNumber of folds for backfitting " + "(default 0, no backfitting).", "N", 1, "-N ")); newVector.addElement(new Option("\tAllow unclassified instances.", "U", 0, "-U")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Gets options from this classifier. * * @return the options for the current setup */ @Override public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); result.add("-K"); result.add("" + getKValue()); result.add("-M"); result.add("" + getMinNum()); result.add("-S"); result.add("" + getSeed()); if (getMaxDepth() > 0) { result.add("-depth"); result.add("" + getMaxDepth()); } if (getNumFolds() > 0) { result.add("-N"); result.add("" + getNumFolds()); } if (getAllowUnclassifiedInstances()) { result.add("-U"); } options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Parses a given list of options. *

* * Valid options are: *

* *

   * -K <number of attributes>
   *  Number of attributes to randomly investigate
   *  (<0 = int(log_2(#attributes)+1)).
   * 
* *
   * -M <minimum number of instances>
   *  Set minimum number of instances per leaf.
   * 
* *
   * -S <num>
   *  Seed for random number generator.
   *  (default 1)
   * 
* *
   * -depth <num>
   *  The maximum depth of the tree, 0 for unlimited.
   *  (default 0)
   * 
* *
   * -N <num>
   *  Number of folds for backfitting (default 0, no backfitting).
   * 
* *
   * -U
   *  Allow unclassified instances.
   * 
* *
   * -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
   * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('K', options); if (tmpStr.length() != 0) { m_KValue = Integer.parseInt(tmpStr); } else { m_KValue = 0; } tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) { m_MinNum = Double.parseDouble(tmpStr); } else { m_MinNum = 1; } tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) { setSeed(Integer.parseInt(tmpStr)); } else { setSeed(1); } tmpStr = Utils.getOption("depth", options); if (tmpStr.length() != 0) { setMaxDepth(Integer.parseInt(tmpStr)); } else { setMaxDepth(0); } String numFoldsString = Utils.getOption('N', options); if (numFoldsString.length() != 0) { m_NumFolds = Integer.parseInt(numFoldsString); } else { m_NumFolds = 0; } setAllowUnclassifiedInstances(Utils.getFlag('U', options)); super.setOptions(options); Utils.checkForRemainingOptions(options); } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Builds classifier. * * @param data the data to train with * @throws Exception if something goes wrong or the data doesn't fit */ @Override public void buildClassifier(Instances data) throws Exception { // Make sure K value is in range if (m_KValue > data.numAttributes() - 1) m_KValue = data.numAttributes() - 1; if (m_KValue < 1) m_KValue = (int) Utils.log2(data.numAttributes() - 1) + 1; // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); // only class? -> build ZeroR model if (data.numAttributes() == 1) { System.err .println("Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_zeroR = new weka.classifiers.rules.ZeroR(); m_zeroR.buildClassifier(data); return; } else { m_zeroR = null; } // Figure out appropriate datasets Instances train = null; Instances backfit = null; Random rand = data.getRandomNumberGenerator(m_randomSeed); if (m_NumFolds <= 0) { train = data; } else { data.randomize(rand); data.stratify(m_NumFolds); train = data.trainCV(m_NumFolds, 1, rand); backfit = data.testCV(m_NumFolds, 1); } // Create the attribute indices window int[] attIndicesWindow = new int[data.numAttributes() - 1]; int j = 0; for (int i = 0; i < attIndicesWindow.length; i++) { if (j == data.classIndex()) j++; // do not include the class attIndicesWindow[i] = j++; } // Compute initial class counts double[] classProbs = new double[train.numClasses()]; for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); classProbs[(int) inst.classValue()] += inst.weight(); } // Build tree m_Tree = new Tree(); m_Info = new Instances(data, 0); m_Tree.buildTree(train, classProbs, attIndicesWindow, rand, 0); // Backfit if required if (backfit != null) { m_Tree.backfitData(backfit); } } /** * Computes class distribution of an instance using the tree. * * @param instance the instance to compute the distribution for * @return the computed class probabilities * @throws Exception if computation fails */ @Override public double[] distributionForInstance(Instance instance) throws Exception { if (m_zeroR != null) { return m_zeroR.distributionForInstance(instance); } else { return m_Tree.distributionForInstance(instance); } } /** * Outputs the decision tree. * * @return a string representation of the classifier */ @Override public String toString() { // only ZeroR model? if (m_zeroR != null) { StringBuffer buf = new StringBuffer(); buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); buf.append(this.getClass().getName().replaceAll(".*\\.", "") .replaceAll(".", "=") + "\n\n"); buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); buf.append(m_zeroR.toString()); return buf.toString(); } if (m_Tree == null) { return "RandomTree: no model has been built yet."; } else { return "\nRandomTree\n==========\n" + m_Tree.toString(0) + "\n" + "\nSize of the tree : " + m_Tree.numNodes() + (getMaxDepth() > 0 ? ("\nMax depth of tree: " + getMaxDepth()) : ("")); } } /** * Returns graph describing the tree. * * @return the graph describing the tree * @throws Exception if graph can't be computed */ public String graph() throws Exception { if (m_Tree == null) { throw new Exception("RandomTree: No model built yet."); } StringBuffer resultBuff = new StringBuffer(); m_Tree.toGraph(resultBuff, 0, null); String result = "digraph RandomTree {\n" + "edge [style=bold]\n" + resultBuff.toString() + "\n}\n"; return result; } /** * Returns the type of graph this classifier represents. * * @return Drawable.TREE */ public int graphType() { return Drawable.TREE; } /** * Builds the classifier to generate a partition. */ public void generatePartition(Instances data) throws Exception { buildClassifier(data); } /** * Computes array that indicates node membership. Array locations are * allocated based on breadth-first exploration of the tree. */ public double[] getMembershipValues(Instance instance) throws Exception { if (m_zeroR != null) { double[] m = new double[1]; m[0] = instance.weight(); return m; } else { // Set up array for membership values double[] a = new double[numElements()]; // Initialize queues Queue queueOfWeights = new LinkedList(); Queue queueOfNodes = new LinkedList(); queueOfWeights.add(instance.weight()); queueOfNodes.add(m_Tree); int index = 0; // While the queue is not empty while (!queueOfNodes.isEmpty()) { a[index++] = queueOfWeights.poll(); Tree node = queueOfNodes.poll(); // Is node a leaf? if (node.m_Attribute <= -1) { continue; } // Compute weight distribution double[] weights = new double[node.m_Successors.length]; if (instance.isMissing(node.m_Attribute)) { System.arraycopy(node.m_Prop, 0, weights, 0, node.m_Prop.length); } else if (m_Info.attribute(node.m_Attribute).isNominal()) { weights[(int) instance.value(node.m_Attribute)] = 1.0; } else { if (instance.value(node.m_Attribute) < node.m_SplitPoint) { weights[0] = 1.0; } else { weights[1] = 1.0; } } for (int i = 0; i < node.m_Successors.length; i++) { queueOfNodes.add(node.m_Successors[i]); queueOfWeights.add(a[index - 1] * weights[i]); } } return a; } } /** * Returns the number of elements in the partition. */ public int numElements() throws Exception { if (m_zeroR != null) { return 1; } return m_Tree.numNodes(); } /** * The inner class for dealing with the tree. */ protected class Tree implements Serializable { /** For serializatiin */ private static final long serialVersionUID = 3549573538656522569L; /** The subtrees appended to this tree. */ protected Tree[] m_Successors; /** The attribute to split on. */ protected int m_Attribute = -1; /** The split point. */ protected double m_SplitPoint = Double.NaN; /** The proportions of training instances going down each branch. */ protected double[] m_Prop = null; /** Class probabilities from the training data. */ protected double[] m_ClassDistribution = null; /** * Backfits the given data into the tree. */ public void backfitData(Instances data) throws Exception { // Compute initial class counts double[] classProbs = new double[data.numClasses()]; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); classProbs[(int) inst.classValue()] += inst.weight(); } // Fit data into tree backfitData(data, classProbs); } /** * Computes class distribution of an instance using the decision tree. * * @param instance the instance to compute the distribution for * @return the computed class distribution * @throws Exception if computation fails */ public double[] distributionForInstance(Instance instance) throws Exception { double[] returnedDist = null; if (m_Attribute > -1) { // Node is not a leaf if (instance.isMissing(m_Attribute)) { // Value is missing returnedDist = new double[m_Info.numClasses()]; // Split instance up for (int i = 0; i < m_Successors.length; i++) { double[] help = m_Successors[i].distributionForInstance(instance); if (help != null) { for (int j = 0; j < help.length; j++) { returnedDist[j] += m_Prop[i] * help[j]; } } } } else if (m_Info.attribute(m_Attribute).isNominal()) { // For nominal attributes returnedDist = m_Successors[(int) instance.value(m_Attribute)] .distributionForInstance(instance); } else { // For numeric attributes if (instance.value(m_Attribute) < m_SplitPoint) { returnedDist = m_Successors[0].distributionForInstance(instance); } else { returnedDist = m_Successors[1].distributionForInstance(instance); } } } // Node is a leaf or successor is empty? if ((m_Attribute == -1) || (returnedDist == null)) { // Is node empty? if (m_ClassDistribution == null) { if (getAllowUnclassifiedInstances()) { return new double[m_Info.numClasses()]; } else { return null; } } // Else return normalized distribution double[] normalizedDistribution = m_ClassDistribution.clone(); Utils.normalize(normalizedDistribution); return normalizedDistribution; } else { return returnedDist; } } /** * Outputs one node for graph. * * @param text the buffer to append the output to * @param num unique node id * @return the next node id * @throws Exception if generation fails */ public int toGraph(StringBuffer text, int num) throws Exception { int maxIndex = Utils.maxIndex(m_ClassDistribution); String classValue = Utils.backQuoteChars(m_Info.classAttribute().value(maxIndex)); num++; if (m_Attribute == -1) { text.append("N" + Integer.toHexString(hashCode()) + " [label=\"" + num + ": " + classValue + "\"" + "shape=box]\n"); } else { text.append("N" + Integer.toHexString(hashCode()) + " [label=\"" + num + ": " + classValue + "\"]\n"); for (int i = 0; i < m_Successors.length; i++) { text.append("N" + Integer.toHexString(hashCode()) + "->" + "N" + Integer.toHexString(m_Successors[i].hashCode()) + " [label=\"" + Utils.backQuoteChars(m_Info.attribute(m_Attribute).name())); if (m_Info.attribute(m_Attribute).isNumeric()) { if (i == 0) { text.append(" < " + Utils.doubleToString(m_SplitPoint, 2)); } else { text.append(" >= " + Utils.doubleToString(m_SplitPoint, 2)); } } else { text.append(" = " + Utils.backQuoteChars(m_Info.attribute(m_Attribute).value(i))); } text.append("\"]\n"); num = m_Successors[i].toGraph(text, num); } } return num; } /** * Outputs a leaf. * * @return the leaf as string * @throws Exception if generation fails */ protected String leafString() throws Exception { double sum = 0, maxCount = 0; int maxIndex = 0; if (m_ClassDistribution != null) { sum = Utils.sum(m_ClassDistribution); maxIndex = Utils.maxIndex(m_ClassDistribution); maxCount = m_ClassDistribution[maxIndex]; } return " : " + m_Info.classAttribute().value(maxIndex) + " (" + Utils.doubleToString(sum, 2) + "/" + Utils.doubleToString(sum - maxCount, 2) + ")"; } /** * Recursively outputs the tree. * * @param level the current level of the tree * @return the generated subtree */ protected String toString(int level) { try { StringBuffer text = new StringBuffer(); if (m_Attribute == -1) { // Output leaf info return leafString(); } else if (m_Info.attribute(m_Attribute).isNominal()) { // For nominal attributes for (int i = 0; i < m_Successors.length; i++) { text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " = " + m_Info.attribute(m_Attribute).value(i)); text.append(m_Successors[i].toString(level + 1)); } } else { // For numeric attributes text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " < " + Utils.doubleToString(m_SplitPoint, 2)); text.append(m_Successors[0].toString(level + 1)); text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " >= " + Utils.doubleToString(m_SplitPoint, 2)); text.append(m_Successors[1].toString(level + 1)); } return text.toString(); } catch (Exception e) { e.printStackTrace(); return "RandomTree: tree can't be printed"; } } /** * Recursively backfits data into the tree. * * @param data the data to work with * @param classProbs the class distribution * @throws Exception if generation fails */ protected void backfitData(Instances data, double[] classProbs) throws Exception { // Make leaf if there are no training instances if (data.numInstances() == 0) { m_Attribute = -1; m_ClassDistribution = null; m_Prop = null; return; } // Check if node doesn't contain enough instances or is pure // or maximum depth reached m_ClassDistribution = classProbs.clone(); /* * if (Utils.sum(m_ClassDistribution) < 2 * m_MinNum || * Utils.eq(m_ClassDistribution[Utils.maxIndex(m_ClassDistribution)], * Utils .sum(m_ClassDistribution))) { * * // Make leaf m_Attribute = -1; m_Prop = null; return; } */ // Are we at an inner node if (m_Attribute > -1) { // Compute new weights for subsets based on backfit data m_Prop = new double[m_Successors.length]; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (!inst.isMissing(m_Attribute)) { if (data.attribute(m_Attribute).isNominal()) { m_Prop[(int) inst.value(m_Attribute)] += inst.weight(); } else { m_Prop[(inst.value(m_Attribute) < m_SplitPoint) ? 0 : 1] += inst .weight(); } } } // If we only have missing values we can make this node into a leaf if (Utils.sum(m_Prop) <= 0) { m_Attribute = -1; m_Prop = null; return; } // Otherwise normalize the proportions Utils.normalize(m_Prop); // Split data Instances[] subsets = splitData(data); // Go through subsets for (int i = 0; i < subsets.length; i++) { // Compute distribution for current subset double[] dist = new double[data.numClasses()]; for (int j = 0; j < subsets[i].numInstances(); j++) { dist[(int) subsets[i].instance(j).classValue()] += subsets[i] .instance(j).weight(); } // Backfit subset m_Successors[i].backfitData(subsets[i], dist); } // If unclassified instances are allowed, we don't need to store the // class distribution if (getAllowUnclassifiedInstances()) { m_ClassDistribution = null; return; } // Otherwise, if all successors are non-empty, we don't need to store // the class distribution boolean emptySuccessor = false; for (int i = 0; i < subsets.length; i++) { if (m_Successors[i].m_ClassDistribution == null) { emptySuccessor = true; return; } } m_ClassDistribution = null; // If we have a least two non-empty successors, we should keep this tree /* * int nonEmptySuccessors = 0; for (int i = 0; i < subsets.length; i++) * { if (m_Successors[i].m_ClassDistribution != null) { * nonEmptySuccessors++; if (nonEmptySuccessors > 1) { return; } } } * * // Otherwise, this node is a leaf or should become a leaf * m_Successors = null; m_Attribute = -1; m_Prop = null; return; */ } } /** * Recursively generates a tree. * * @param data the data to work with * @param classProbs the class distribution * @param attIndicesWindow the attribute window to choose attributes from * @param random random number generator for choosing random attributes * @param depth the current depth * @throws Exception if generation fails */ protected void buildTree(Instances data, double[] classProbs, int[] attIndicesWindow, Random random, int depth) throws Exception { // Make leaf if there are no training instances if (data.numInstances() == 0) { m_Attribute = -1; m_ClassDistribution = null; m_Prop = null; return; } // Check if node doesn't contain enough instances or is pure // or maximum depth reached m_ClassDistribution = classProbs.clone(); if (Utils.sum(m_ClassDistribution) < 2 * m_MinNum || Utils.eq(m_ClassDistribution[Utils.maxIndex(m_ClassDistribution)], Utils.sum(m_ClassDistribution)) || ((getMaxDepth() > 0) && (depth >= getMaxDepth()))) { // Make leaf m_Attribute = -1; m_Prop = null; return; } // Compute class distributions and value of splitting // criterion for each attribute double val = -Double.MAX_VALUE; double split = -Double.MAX_VALUE; double[][] bestDists = null; double[] bestProps = null; int bestIndex = 0; // Handles to get arrays out of distribution method double[][] props = new double[1][0]; double[][][] dists = new double[1][0][0]; // Investigate K random attributes int attIndex = 0; int windowSize = attIndicesWindow.length; int k = m_KValue; boolean gainFound = false; while ((windowSize > 0) && (k-- > 0 || !gainFound)) { int chosenIndex = random.nextInt(windowSize); attIndex = attIndicesWindow[chosenIndex]; // shift chosen attIndex out of window attIndicesWindow[chosenIndex] = attIndicesWindow[windowSize - 1]; attIndicesWindow[windowSize - 1] = attIndex; windowSize--; double currSplit = distribution(props, dists, attIndex, data); double currVal = gain(dists[0], priorVal(dists[0])); if (Utils.gr(currVal, 0)) gainFound = true; if ((currVal > val) || ((currVal == val) && (attIndex < bestIndex))) { val = currVal; bestIndex = attIndex; split = currSplit; bestProps = props[0]; bestDists = dists[0]; } } // Find best attribute m_Attribute = bestIndex; // Any useful split found? if (Utils.gr(val, 0)) { // Build subtrees m_SplitPoint = split; m_Prop = bestProps; Instances[] subsets = splitData(data); m_Successors = new Tree[bestDists.length]; for (int i = 0; i < bestDists.length; i++) { m_Successors[i] = new Tree(); m_Successors[i].buildTree(subsets[i], bestDists[i], attIndicesWindow, random, depth + 1); } // If all successors are non-empty, we don't need to store the class // distribution boolean emptySuccessor = false; for (int i = 0; i < subsets.length; i++) { if (m_Successors[i].m_ClassDistribution == null) { emptySuccessor = true; break; } } if (!emptySuccessor) { m_ClassDistribution = null; } } else { // Make leaf m_Attribute = -1; } } /** * Computes size of the tree. * * @return the number of nodes */ public int numNodes() { if (m_Attribute == -1) { return 1; } else { int size = 1; for (int i = 0; i < m_Successors.length; i++) { size += m_Successors[i].numNodes(); } return size; } } /** * Splits instances into subsets based on the given split. * * @param data the data to work with * @return the subsets of instances * @throws Exception if something goes wrong */ protected Instances[] splitData(Instances data) throws Exception { // Allocate array of Instances objects Instances[] subsets = new Instances[m_Prop.length]; for (int i = 0; i < m_Prop.length; i++) { subsets[i] = new Instances(data, data.numInstances()); } // Go through the data for (int i = 0; i < data.numInstances(); i++) { // Get instance Instance inst = data.instance(i); // Does the instance have a missing value? if (inst.isMissing(m_Attribute)) { // Split instance up for (int k = 0; k < m_Prop.length; k++) { if (m_Prop[k] > 0) { Instance copy = (Instance) inst.copy(); copy.setWeight(m_Prop[k] * inst.weight()); subsets[k].add(copy); } } // Proceed to next instance continue; } // Do we have a nominal attribute? if (data.attribute(m_Attribute).isNominal()) { subsets[(int) inst.value(m_Attribute)].add(inst); // Proceed to next instance continue; } // Do we have a numeric attribute? if (data.attribute(m_Attribute).isNumeric()) { subsets[(inst.value(m_Attribute) < m_SplitPoint) ? 0 : 1].add(inst); // Proceed to next instance continue; } // Else throw an exception throw new IllegalArgumentException("Unknown attribute type"); } // Save memory for (int i = 0; i < m_Prop.length; i++) { subsets[i].compactify(); } // Return the subsets return subsets; } /** * Computes class distribution for an attribute. * * @param props * @param dists * @param att the attribute index * @param data the data to work with * @throws Exception if something goes wrong */ protected double distribution(double[][] props, double[][][] dists, int att, Instances data) throws Exception { double splitPoint = Double.NaN; Attribute attribute = data.attribute(att); double[][] dist = null; int indexOfFirstMissingValue = data.numInstances(); if (attribute.isNominal()) { // For nominal attributes dist = new double[attribute.numValues()][data.numClasses()]; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (inst.isMissing(att)) { // Skip missing values at this stage if (indexOfFirstMissingValue == data.numInstances()) { indexOfFirstMissingValue = i; } continue; } dist[(int) inst.value(att)][(int) inst.classValue()] += inst.weight(); } } else { // For numeric attributes double[][] currDist = new double[2][data.numClasses()]; dist = new double[2][data.numClasses()]; // Sort data data.sort(att); // Move all instances into second subset for (int j = 0; j < data.numInstances(); j++) { Instance inst = data.instance(j); if (inst.isMissing(att)) { // Can stop as soon as we hit a missing value indexOfFirstMissingValue = j; break; } currDist[1][(int) inst.classValue()] += inst.weight(); } // Value before splitting double priorVal = priorVal(currDist); // Save initial distribution for (int j = 0; j < currDist.length; j++) { System.arraycopy(currDist[j], 0, dist[j], 0, dist[j].length); } // Try all possible split points double currSplit = data.instance(0).value(att); double currVal, bestVal = -Double.MAX_VALUE; for (int i = 0; i < indexOfFirstMissingValue; i++) { Instance inst = data.instance(i); // Can we place a sensible split point here? if (inst.value(att) > currSplit) { // Compute gain for split point currVal = gain(currDist, priorVal); // Is the current split point the best point so far? if (currVal > bestVal) { // Store value of current point bestVal = currVal; // Save split point splitPoint = (inst.value(att) + currSplit) / 2.0; // Check for numeric precision problems if (splitPoint <= currSplit) { splitPoint = inst.value(att); } // Save distribution for (int j = 0; j < currDist.length; j++) { System.arraycopy(currDist[j], 0, dist[j], 0, dist[j].length); } } currSplit = inst.value(att); } // Shift over the weight currDist[0][(int) inst.classValue()] += inst.weight(); currDist[1][(int) inst.classValue()] -= inst.weight(); } } // Compute weights for subsets props[0] = new double[dist.length]; for (int k = 0; k < props[0].length; k++) { props[0][k] = Utils.sum(dist[k]); } if (Utils.eq(Utils.sum(props[0]), 0)) { for (int k = 0; k < props[0].length; k++) { props[0][k] = 1.0 / props[0].length; } } else { Utils.normalize(props[0]); } // Distribute weights for instances with missing values for (int i = indexOfFirstMissingValue; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (attribute.isNominal()) { // Need to check if attribute value is missing if (inst.isMissing(att)) { for (int j = 0; j < dist.length; j++) { dist[j][(int) inst.classValue()] += props[0][j] * inst.weight(); } } } else { // Can be sure that value is missing, so no test required for (int j = 0; j < dist.length; j++) { dist[j][(int) inst.classValue()] += props[0][j] * inst.weight(); } } } // Return distribution and split point dists[0] = dist; return splitPoint; } /** * Computes value of splitting criterion before split. * * @param dist the distributions * @return the splitting criterion */ protected double priorVal(double[][] dist) { return ContingencyTables.entropyOverColumns(dist); } /** * Computes value of splitting criterion after split. * * @param dist the distributions * @param priorVal the splitting criterion * @return the gain after the split */ protected double gain(double[][] dist, double priorVal) { return priorVal - ContingencyTables.entropyConditionedOnRows(dist); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 10993 $"); } /** * Outputs one node for graph. * * @param text the buffer to append the output to * @param num the current node id * @param parent the parent of the nodes * @return the next node id * @throws Exception if something goes wrong */ protected int toGraph(StringBuffer text, int num, Tree parent) throws Exception { num++; if (m_Attribute == -1) { text.append("N" + Integer.toHexString(Tree.this.hashCode()) + " [label=\"" + num + leafString() + "\"" + " shape=box]\n"); } else { text.append("N" + Integer.toHexString(Tree.this.hashCode()) + " [label=\"" + num + ": " + m_Info.attribute(m_Attribute).name() + "\"]\n"); for (int i = 0; i < m_Successors.length; i++) { text.append("N" + Integer.toHexString(Tree.this.hashCode()) + "->" + "N" + Integer.toHexString(m_Successors[i].hashCode()) + " [label=\""); if (m_Info.attribute(m_Attribute).isNumeric()) { if (i == 0) { text.append(" < " + Utils.doubleToString(m_SplitPoint, 2)); } else { text.append(" >= " + Utils.doubleToString(m_SplitPoint, 2)); } } else { text.append(" = " + m_Info.attribute(m_Attribute).value(i)); } text.append("\"]\n"); num = m_Successors[i].toGraph(text, num, this); } } return num; } } /** * Main method for this class. * * @param argv the commandline parameters */ public static void main(String[] argv) { runClassifier(new RandomTree(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy