All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.SimpleCart Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * SimpleCart.java
 * Copyright (C) 2007 Haijian Shi
 *
 */

package weka.classifiers.trees;

import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableClassifier;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.matrix.Matrix;

import java.util.Arrays;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 
 * Class implementing minimal cost-complexity pruning.
* Note when dealing with missing values, use "fractional instances" method instead of surrogate split method.
*
* For more information, see:
*
* Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (1984). Classification and Regression Trees. Wadsworth International Group, Belmont, California. *

* * BibTeX: *

 * @book{Breiman1984,
 *    address = {Belmont, California},
 *    author = {Leo Breiman and Jerome H. Friedman and Richard A. Olshen and Charles J. Stone},
 *    publisher = {Wadsworth International Group},
 *    title = {Classification and Regression Trees},
 *    year = {1984}
 * }
 * 
*

* * Valid options are:

* *

 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -M <min no>
 *  The minimal number of instances at the terminal nodes.
 *  (default 2)
* *
 -N <num folds>
 *  The number of folds used in the minimal cost-complexity pruning.
 *  (default 5)
* *
 -U
 *  Don't use the minimal cost-complexity pruning.
 *  (default yes).
* *
 -H
 *  Don't use the heuristic method for binary split.
 *  (default true).
* *
 -A
 *  Use 1 SE rule to make pruning decision.
 *  (default no).
* *
 -C
 *  Percentage of training data size (0-1].
 *  (default 1).
* * * @author Haijian Shi ([email protected]) * @version $Revision: 10491 $ */ public class SimpleCart extends RandomizableClassifier implements AdditionalMeasureProducer, TechnicalInformationHandler { /** For serialization. */ private static final long serialVersionUID = 4154189200352566053L; /** Training data. */ protected Instances m_train; /** Successor nodes. */ protected SimpleCart[] m_Successors; /** Attribute used to split data. */ protected Attribute m_Attribute; /** Split point for a numeric attribute. */ protected double m_SplitValue; /** Split subset used to split data for nominal attributes. */ protected String m_SplitString; /** Class value if the node is leaf. */ protected double m_ClassValue; /** Class attriubte of data. */ protected Attribute m_ClassAttribute; /** Minimum number of instances in at the terminal nodes. */ protected double m_minNumObj = 2; /** Number of folds for minimal cost-complexity pruning. */ protected int m_numFoldsPruning = 5; /** Alpha-value (for pruning) at the node. */ protected double m_Alpha; /** Number of training examples misclassified by the model (subtree rooted). */ protected double m_numIncorrectModel; /** Number of training examples misclassified by the model (subtree not rooted). */ protected double m_numIncorrectTree; /** Indicate if the node is a leaf node. */ protected boolean m_isLeaf; /** If use minimal cost-compexity pruning. */ protected boolean m_Prune = true; /** Total number of instances used to build the classifier. */ protected int m_totalTrainInstances; /** Proportion for each branch. */ protected double[] m_Props; /** Class probabilities. */ protected double[] m_ClassProbs = null; /** Distributions of leaf node (or temporary leaf node in minimal cost-complexity pruning) */ protected double[] m_Distribution; /** If use huristic search for nominal attributes in multi-class problems (default true). */ protected boolean m_Heuristic = true; /** If use the 1SE rule to make final decision tree. */ protected boolean m_UseOneSE = false; /** Training data size. */ protected double m_SizePer = 1; /** * Return a description suitable for displaying in the explorer/experimenter. * * @return a description suitable for displaying in the * explorer/experimenter */ public String globalInfo() { return "Class implementing minimal cost-complexity pruning.\n" + "Note when dealing with missing values, use \"fractional " + "instances\" method instead of surrogate split method.\n\n" + "For more information, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.BOOK); result.setValue(Field.AUTHOR, "Leo Breiman and Jerome H. Friedman and Richard A. Olshen and Charles J. Stone"); result.setValue(Field.YEAR, "1984"); result.setValue(Field.TITLE, "Classification and Regression Trees"); result.setValue(Field.PUBLISHER, "Wadsworth International Group"); result.setValue(Field.ADDRESS, "Belmont, California"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); return result; } /** * Build the classifier. * * @param data the training instances * @throws Exception if something goes wrong */ public void buildClassifier(Instances data) throws Exception { getCapabilities().testWithFail(data); data = new Instances(data); data.deleteWithMissingClass(); // unpruned CART decision tree if (!m_Prune) { // calculate sorted indices and weights, and compute initial class counts. int[][] sortedIndices = new int[data.numAttributes()][0]; double[][] weights = new double[data.numAttributes()][0]; double[] classProbs = new double[data.numClasses()]; double totalWeight = computeSortedInfo(data,sortedIndices, weights,classProbs); makeTree(data, data.numInstances(),sortedIndices,weights,classProbs, totalWeight,m_minNumObj, m_Heuristic); return; } Random random = new Random(m_Seed); Instances cvData = new Instances(data); cvData.randomize(random); cvData = new Instances(cvData,0,(int)(cvData.numInstances()*m_SizePer)-1); cvData.stratify(m_numFoldsPruning); double[][] alphas = new double[m_numFoldsPruning][]; double[][] errors = new double[m_numFoldsPruning][]; // calculate errors and alphas for each fold for (int i = 0; i < m_numFoldsPruning; i++) { //for every fold, grow tree on training set and fix error on test set. Instances train = cvData.trainCV(m_numFoldsPruning, i); Instances test = cvData.testCV(m_numFoldsPruning, i); // calculate sorted indices and weights, and compute initial class counts for each fold int[][] sortedIndices = new int[train.numAttributes()][0]; double[][] weights = new double[train.numAttributes()][0]; double[] classProbs = new double[train.numClasses()]; double totalWeight = computeSortedInfo(train,sortedIndices, weights,classProbs); makeTree(train, train.numInstances(),sortedIndices,weights,classProbs, totalWeight,m_minNumObj, m_Heuristic); int numNodes = numInnerNodes(); alphas[i] = new double[numNodes + 2]; errors[i] = new double[numNodes + 2]; // prune back and log alpha-values and errors on test set prune(alphas[i], errors[i], test); } // calculate sorted indices and weights, and compute initial class counts on all training instances int[][] sortedIndices = new int[data.numAttributes()][0]; double[][] weights = new double[data.numAttributes()][0]; double[] classProbs = new double[data.numClasses()]; double totalWeight = computeSortedInfo(data,sortedIndices, weights,classProbs); //build tree using all the data makeTree(data, data.numInstances(),sortedIndices,weights,classProbs, totalWeight,m_minNumObj, m_Heuristic); int numNodes = numInnerNodes(); double[] treeAlphas = new double[numNodes + 2]; // prune back and log alpha-values int iterations = prune(treeAlphas, null, null); double[] treeErrors = new double[numNodes + 2]; // for each pruned subtree, find the cross-validated error for (int i = 0; i <= iterations; i++){ //compute midpoint alphas double alpha = Math.sqrt(treeAlphas[i] * treeAlphas[i+1]); double error = 0; for (int k = 0; k < m_numFoldsPruning; k++) { int l = 0; while (alphas[k][l] <= alpha) l++; error += errors[k][l - 1]; } treeErrors[i] = error/m_numFoldsPruning; } // find best alpha int best = -1; double bestError = Double.MAX_VALUE; for (int i = iterations; i >= 0; i--) { if (treeErrors[i] < bestError) { bestError = treeErrors[i]; best = i; } } // 1 SE rule to choose expansion if (m_UseOneSE) { double oneSE = Math.sqrt(bestError*(1-bestError)/(data.numInstances())); for (int i = iterations; i >= 0; i--) { if (treeErrors[i] <= bestError+oneSE) { best = i; break; } } } double bestAlpha = Math.sqrt(treeAlphas[best] * treeAlphas[best + 1]); //"unprune" final tree (faster than regrowing it) unprune(); prune(bestAlpha); } /** * Make binary decision tree recursively. * * @param data the training instances * @param totalInstances total number of instances * @param sortedIndices sorted indices of the instances * @param weights weights of the instances * @param classProbs class probabilities * @param totalWeight total weight of instances * @param minNumObj minimal number of instances at leaf nodes * @param useHeuristic if use heuristic search for nominal attributes in multi-class problem * @throws Exception if something goes wrong */ protected void makeTree(Instances data, int totalInstances, int[][] sortedIndices, double[][] weights, double[] classProbs, double totalWeight, double minNumObj, boolean useHeuristic) throws Exception{ // if no instances have reached this node (normally won't happen) if (totalWeight == 0){ m_Attribute = null; m_ClassValue = Instance.missingValue(); m_Distribution = new double[data.numClasses()]; return; } m_totalTrainInstances = totalInstances; m_isLeaf = true; m_Successors = null; m_ClassProbs = new double[classProbs.length]; m_Distribution = new double[classProbs.length]; System.arraycopy(classProbs, 0, m_ClassProbs, 0, classProbs.length); System.arraycopy(classProbs, 0, m_Distribution, 0, classProbs.length); if (Utils.sum(m_ClassProbs)!=0) Utils.normalize(m_ClassProbs); // Compute class distributions and value of splitting // criterion for each attribute double[][][] dists = new double[data.numAttributes()][0][0]; double[][] props = new double[data.numAttributes()][0]; double[][] totalSubsetWeights = new double[data.numAttributes()][2]; double[] splits = new double[data.numAttributes()]; String[] splitString = new String[data.numAttributes()]; double[] giniGains = new double[data.numAttributes()]; // for each attribute find split information for (int i = 0; i < data.numAttributes(); i++) { Attribute att = data.attribute(i); if (i==data.classIndex()) continue; if (att.isNumeric()) { // numeric attribute splits[i] = numericDistribution(props, dists, att, sortedIndices[i], weights[i], totalSubsetWeights, giniGains, data); } else { // nominal attribute splitString[i] = nominalDistribution(props, dists, att, sortedIndices[i], weights[i], totalSubsetWeights, giniGains, data, useHeuristic); } } // Find best attribute (split with maximum Gini gain) int attIndex = Utils.maxIndex(giniGains); m_Attribute = data.attribute(attIndex); m_train = new Instances(data, sortedIndices[attIndex].length); for (int i=0; i 0); double preAlpha = Double.MAX_VALUE; while (prune) { // select node with minimum alpha SimpleCart nodeToPrune = nodeToPrune(nodeList); // want to prune if its alpha is smaller than alpha if (nodeToPrune.m_Alpha > alpha) { break; } nodeToPrune.makeLeaf(nodeToPrune.m_train); // normally would not happen if (nodeToPrune.m_Alpha==preAlpha) { nodeToPrune.makeLeaf(nodeToPrune.m_train); treeErrors(); calculateAlphas(); nodeList = getInnerNodes(); prune = (nodeList.size() > 0); continue; } preAlpha = nodeToPrune.m_Alpha; //update tree errors and alphas treeErrors(); calculateAlphas(); nodeList = getInnerNodes(); prune = (nodeList.size() > 0); } } /** * Method for performing one fold in the cross-validation of minimal * cost-complexity pruning. Generates a sequence of alpha-values with error * estimates for the corresponding (partially pruned) trees, given the test * set of that fold. * * @param alphas array to hold the generated alpha-values * @param errors array to hold the corresponding error estimates * @param test test set of that fold (to obtain error estimates) * @return the iteration of the pruning * @throws Exception if something goes wrong */ public int prune(double[] alphas, double[] errors, Instances test) throws Exception { Vector nodeList; // determine training error of subtrees (both with and without replacing a subtree), // and calculate alpha-values from them modelErrors(); treeErrors(); calculateAlphas(); // get list of all inner nodes in the tree nodeList = getInnerNodes(); boolean prune = (nodeList.size() > 0); //alpha_0 is always zero (unpruned tree) alphas[0] = 0; Evaluation eval; // error of unpruned tree if (errors != null) { eval = new Evaluation(test); eval.evaluateModel(this, test); errors[0] = eval.errorRate(); } int iteration = 0; double preAlpha = Double.MAX_VALUE; while (prune) { iteration++; // get node with minimum alpha SimpleCart nodeToPrune = nodeToPrune(nodeList); // do not set m_sons null, want to unprune nodeToPrune.m_isLeaf = true; // normally would not happen if (nodeToPrune.m_Alpha==preAlpha) { iteration--; treeErrors(); calculateAlphas(); nodeList = getInnerNodes(); prune = (nodeList.size() > 0); continue; } // get alpha-value of node alphas[iteration] = nodeToPrune.m_Alpha; // log error if (errors != null) { eval = new Evaluation(test); eval.evaluateModel(this, test); errors[iteration] = eval.errorRate(); } preAlpha = nodeToPrune.m_Alpha; //update errors/alphas treeErrors(); calculateAlphas(); nodeList = getInnerNodes(); prune = (nodeList.size() > 0); } //set last alpha 1 to indicate end alphas[iteration + 1] = 1.0; return iteration; } /** * Method to "unprune" the CART tree. Sets all leaf-fields to false. * Faster than re-growing the tree because CART do not have to be fit again. */ protected void unprune() { if (m_Successors != null) { m_isLeaf = false; for (int i = 0; i < m_Successors.length; i++) m_Successors[i].unprune(); } } /** * Compute distributions, proportions and total weights of two successor * nodes for a given numeric attribute. * * @param props proportions of each two branches for each attribute * @param dists class distributions of two branches for each attribute * @param att numeric att split on * @param sortedIndices sorted indices of instances for the attirubte * @param weights weights of instances for the attirbute * @param subsetWeights total weight of two branches split based on the attribute * @param giniGains Gini gains for each attribute * @param data training instances * @return Gini gain the given numeric attribute * @throws Exception if something goes wrong */ protected double numericDistribution(double[][] props, double[][][] dists, Attribute att, int[] sortedIndices, double[] weights, double[][] subsetWeights, double[] giniGains, Instances data) throws Exception { double splitPoint = Double.NaN; double[][] dist = null; int numClasses = data.numClasses(); int i; // differ instances with or without missing values double[][] currDist = new double[2][numClasses]; dist = new double[2][numClasses]; // Move all instances without missing values into second subset double[] parentDist = new double[numClasses]; int missingStart = 0; for (int j = 0; j < sortedIndices.length; j++) { Instance inst = data.instance(sortedIndices[j]); if (!inst.isMissing(att)) { missingStart ++; currDist[1][(int)inst.classValue()] += weights[j]; } parentDist[(int)inst.classValue()] += weights[j]; } System.arraycopy(currDist[1], 0, dist[1], 0, dist[1].length); // Try all possible split points double currSplit = data.instance(sortedIndices[0]).value(att); double currGiniGain; double bestGiniGain = -Double.MAX_VALUE; for (i = 0; i < sortedIndices.length; i++) { Instance inst = data.instance(sortedIndices[i]); if (inst.isMissing(att)) { break; } if (inst.value(att) > currSplit) { double[][] tempDist = new double[2][numClasses]; for (int k=0; k<2; k++) { //tempDist[k] = currDist[k]; System.arraycopy(currDist[k], 0, tempDist[k], 0, tempDist[k].length); } double[] tempProps = new double[2]; for (int k=0; k<2; k++) { tempProps[k] = Utils.sum(tempDist[k]); } if (Utils.sum(tempProps) !=0) Utils.normalize(tempProps); // split missing values int index = missingStart; while (index < sortedIndices.length) { Instance insta = data.instance(sortedIndices[index]); for (int j = 0; j < 2; j++) { tempDist[j][(int)insta.classValue()] += tempProps[j] * weights[index]; } index++; } currGiniGain = computeGiniGain(parentDist,tempDist); if (currGiniGain > bestGiniGain) { bestGiniGain = currGiniGain; // clean split point // splitPoint = Math.rint((inst.value(att) + currSplit)/2.0*100000)/100000.0; splitPoint = (inst.value(att) + currSplit) / 2.0; for (int j = 0; j < currDist.length; j++) { System.arraycopy(tempDist[j], 0, dist[j], 0, dist[j].length); } } } currSplit = inst.value(att); currDist[0][(int)inst.classValue()] += weights[i]; currDist[1][(int)inst.classValue()] -= weights[i]; } // Compute weights int attIndex = att.index(); props[attIndex] = new double[2]; for (int k = 0; k < 2; k++) { props[attIndex][k] = Utils.sum(dist[k]); } if (Utils.sum(props[attIndex]) != 0) Utils.normalize(props[attIndex]); // Compute subset weights subsetWeights[attIndex] = new double[2]; for (int j = 0; j < 2; j++) { subsetWeights[attIndex][j] += Utils.sum(dist[j]); } // clean Gini gain //giniGains[attIndex] = Math.rint(bestGiniGain*10000000)/10000000.0; giniGains[attIndex] = bestGiniGain; dists[attIndex] = dist; return splitPoint; } /** * Compute distributions, proportions and total weights of two successor * nodes for a given nominal attribute. * * @param props proportions of each two branches for each attribute * @param dists class distributions of two branches for each attribute * @param att numeric att split on * @param sortedIndices sorted indices of instances for the attirubte * @param weights weights of instances for the attirbute * @param subsetWeights total weight of two branches split based on the attribute * @param giniGains Gini gains for each attribute * @param data training instances * @param useHeuristic if use heuristic search * @return Gini gain for the given nominal attribute * @throws Exception if something goes wrong */ protected String nominalDistribution(double[][] props, double[][][] dists, Attribute att, int[] sortedIndices, double[] weights, double[][] subsetWeights, double[] giniGains, Instances data, boolean useHeuristic) throws Exception { String[] values = new String[att.numValues()]; int numCat = values.length; // number of values of the attribute int numClasses = data.numClasses(); String bestSplitString = ""; double bestGiniGain = -Double.MAX_VALUE; // class frequency for each value int[] classFreq = new int[numCat]; for (int j=0; jbestGiniGain) { bestGiniGain = currGiniGain; bestSplitString = tempStr; for (int jj = 0; jj < 2; jj++) { //dist[jj] = new double[currDist[jj].length]; System.arraycopy(tempDist[jj], 0, dist[jj], 0, dist[jj].length); } } } } // multi-class problems - exhaustive search else if (!useHeuristic || nonEmpty<=4) { // Firstly, for attribute values which class frequency is not zero for (int i=0; i<(int)Math.pow(2,nonEmpty-1); i++) { String tempStr=""; currDist = new double[2][numClasses]; int mod; int bit10 = i; for (int j=nonEmpty-1; j>=0; j--) { mod = bit10%2; // convert from 10bit to 2bit if (mod==1) { if (tempStr=="") tempStr = "("+nonEmptyValues[j]+")"; else tempStr += "|" + "("+nonEmptyValues[j]+")"; } bit10 = bit10/2; } for (int j=0; jbestGiniGain) { bestGiniGain = currGiniGain; bestSplitString = tempStr; for (int j = 0; j < 2; j++) { //dist[jj] = new double[currDist[jj].length]; System.arraycopy(tempDist[j], 0, dist[j], 0, dist[j].length); } } } } // huristic search to solve multi-classes problems else { // Firstly, for attribute values which class frequency is not zero int n = nonEmpty; int k = data.numClasses(); // number of classes of the data double[][] P = new double[n][k]; // class probability matrix int[] numInstancesValue = new int[n]; // number of instances for an attribute value double[] meanClass = new double[k]; // vector of mean class probability int numInstances = data.numInstances(); // total number of instances // initialize the vector of mean class probability for (int j=0; jlargest) { index=i; largest = eigenValues[i]; } } // calculate the first principle component double[] FPC = new double[k]; Matrix eigenVector = eigen.getV(); double[][] vectorArray = eigenVector.getArray(); for (int i=0; ibestGiniGain) { bestGiniGain = currGiniGain; bestSplitString = tempStr; for (int jj = 0; jj < 2; jj++) { //dist[jj] = new double[currDist[jj].length]; System.arraycopy(tempDist[jj], 0, dist[jj], 0, dist[jj].length); } } } } // Compute weights int attIndex = att.index(); props[attIndex] = new double[2]; for (int k = 0; k < 2; k++) { props[attIndex][k] = Utils.sum(dist[k]); } if (!(Utils.sum(props[attIndex]) > 0)) { for (int k = 0; k < props[attIndex].length; k++) { props[attIndex][k] = 1.0 / (double)props[attIndex].length; } } else { Utils.normalize(props[attIndex]); } // Compute subset weights subsetWeights[attIndex] = new double[2]; for (int j = 0; j < 2; j++) { subsetWeights[attIndex][j] += Utils.sum(dist[j]); } // Then, for the attribute values that class frequency is 0, split it into the // most frequent branch for (int j=0; j=props[attIndex][1]) { if (bestSplitString=="") bestSplitString = "(" + emptyValues[j] + ")"; else bestSplitString += "|" + "(" + emptyValues[j] + ")"; } } // clean Gini gain for the attribute //giniGains[attIndex] = Math.rint(bestGiniGain*10000000)/10000000.0; giniGains[attIndex] = bestGiniGain; dists[attIndex] = dist; return bestSplitString; } /** * Split data into two subsets and store sorted indices and weights for two * successor nodes. * * @param subsetIndices sorted indecis of instances for each attribute * for two successor node * @param subsetWeights weights of instances for each attribute for * two successor node * @param att attribute the split based on * @param splitPoint split point the split based on if att is numeric * @param splitStr split subset the split based on if att is nominal * @param sortedIndices sorted indices of the instances to be split * @param weights weights of the instances to bes split * @param data training data * @throws Exception if something goes wrong */ protected void splitData(int[][][] subsetIndices, double[][][] subsetWeights, Attribute att, double splitPoint, String splitStr, int[][] sortedIndices, double[][] weights, Instances data) throws Exception { int j; // For each attribute for (int i = 0; i < data.numAttributes(); i++) { if (i==data.classIndex()) continue; int[] num = new int[2]; for (int k = 0; k < 2; k++) { subsetIndices[k][i] = new int[sortedIndices[i].length]; subsetWeights[k][i] = new double[weights[i].length]; } for (j = 0; j < sortedIndices[i].length; j++) { Instance inst = data.instance(sortedIndices[i][j]); if (inst.isMissing(att)) { // Split instance up for (int k = 0; k < 2; k++) { if (m_Props[k] > 0) { subsetIndices[k][i][num[k]] = sortedIndices[i][j]; subsetWeights[k][i][num[k]] = m_Props[k] * weights[i][j]; num[k]++; } } } else { int subset; if (att.isNumeric()) { subset = (inst.value(att) < splitPoint) ? 0 : 1; } else { // nominal attribute if (splitStr.indexOf ("(" + att.value((int)inst.value(att.index()))+")")!=-1) { subset = 0; } else subset = 1; } subsetIndices[subset][i][num[subset]] = sortedIndices[i][j]; subsetWeights[subset][i][num[subset]] = weights[i][j]; num[subset]++; } } // Trim arrays for (int k = 0; k < 2; k++) { int[] copy = new int[num[k]]; System.arraycopy(subsetIndices[k][i], 0, copy, 0, num[k]); subsetIndices[k][i] = copy; double[] copyWeights = new double[num[k]]; System.arraycopy(subsetWeights[k][i], 0 ,copyWeights, 0, num[k]); subsetWeights[k][i] = copyWeights; } } } /** * Updates the numIncorrectModel field for all nodes when subtree (to be * pruned) is rooted. This is needed for calculating the alpha-values. * * @throws Exception if something goes wrong */ public void modelErrors() throws Exception{ Evaluation eval = new Evaluation(m_train); if (!m_isLeaf) { m_isLeaf = true; //temporarily make leaf // calculate distribution for evaluation eval.evaluateModel(this, m_train); m_numIncorrectModel = eval.incorrect(); m_isLeaf = false; for (int i = 0; i < m_Successors.length; i++) m_Successors[i].modelErrors(); } else { eval.evaluateModel(this, m_train); m_numIncorrectModel = eval.incorrect(); } } /** * Updates the numIncorrectTree field for all nodes. This is needed for * calculating the alpha-values. * * @throws Exception if something goes wrong */ public void treeErrors() throws Exception { if (m_isLeaf) { m_numIncorrectTree = m_numIncorrectModel; } else { m_numIncorrectTree = 0; for (int i = 0; i < m_Successors.length; i++) { m_Successors[i].treeErrors(); m_numIncorrectTree += m_Successors[i].m_numIncorrectTree; } } } /** * Updates the alpha field for all nodes. * * @throws Exception if something goes wrong */ public void calculateAlphas() throws Exception { if (!m_isLeaf) { double errorDiff = m_numIncorrectModel - m_numIncorrectTree; if (errorDiff <=0) { //split increases training error (should not normally happen). //prune it instantly. makeLeaf(m_train); m_Alpha = Double.MAX_VALUE; } else { //compute alpha errorDiff /= m_totalTrainInstances; m_Alpha = errorDiff / (double)(numLeaves() - 1); long alphaLong = Math.round(m_Alpha*Math.pow(10,10)); m_Alpha = (double)alphaLong/Math.pow(10,10); for (int i = 0; i < m_Successors.length; i++) { m_Successors[i].calculateAlphas(); } } } else { //alpha = infinite for leaves (do not want to prune) m_Alpha = Double.MAX_VALUE; } } /** * Find the node with minimal alpha value. If two nodes have the same alpha, * choose the one with more leave nodes. * * @param nodeList list of inner nodes * @return the node to be pruned */ protected SimpleCart nodeToPrune(Vector nodeList) { if (nodeList.size()==0) return null; if (nodeList.size()==1) return (SimpleCart)nodeList.elementAt(0); SimpleCart returnNode = (SimpleCart)nodeList.elementAt(0); double baseAlpha = returnNode.m_Alpha; for (int i=1; ireturnNode.numLeaves()) { returnNode = node; } } } return returnNode; } /** * Compute sorted indices, weights and class probabilities for a given * dataset. Return total weights of the data at the node. * * @param data training data * @param sortedIndices sorted indices of instances at the node * @param weights weights of instances at the node * @param classProbs class probabilities at the node * @return total weights of instances at the node * @throws Exception if something goes wrong */ protected double computeSortedInfo(Instances data, int[][] sortedIndices, double[][] weights, double[] classProbs) throws Exception { // Create array of sorted indices and weights double[] vals = new double[data.numInstances()]; for (int j = 0; j < data.numAttributes(); j++) { if (j==data.classIndex()) continue; weights[j] = new double[data.numInstances()]; if (data.attribute(j).isNominal()) { // Handling nominal attributes. Putting indices of // instances with missing values at the end. sortedIndices[j] = new int[data.numInstances()]; int count = 0; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (!inst.isMissing(j)) { sortedIndices[j][count] = i; weights[j][count] = inst.weight(); count++; } } for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (inst.isMissing(j)) { sortedIndices[j][count] = i; weights[j][count] = inst.weight(); count++; } } } else { // Sorted indices are computed for numeric attributes // missing values instances are put to end for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); vals[i] = inst.value(j); } sortedIndices[j] = Utils.sort(vals); for (int i = 0; i < data.numInstances(); i++) { weights[j][i] = data.instance(sortedIndices[j][i]).weight(); } } } // Compute initial class counts double totalWeight = 0; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); classProbs[(int)inst.classValue()] += inst.weight(); totalWeight += inst.weight(); } return totalWeight; } /** * Compute and return gini gain for given distributions of a node and its * successor nodes. * * @param parentDist class distributions of parent node * @param childDist class distributions of successor nodes * @return Gini gain computed */ protected double computeGiniGain(double[] parentDist, double[][] childDist) { double totalWeight = Utils.sum(parentDist); if (totalWeight==0) return 0; double leftWeight = Utils.sum(childDist[0]); double rightWeight = Utils.sum(childDist[1]); double parentGini = computeGini(parentDist, totalWeight); double leftGini = computeGini(childDist[0],leftWeight); double rightGini = computeGini(childDist[1], rightWeight); return parentGini - leftWeight/totalWeight*leftGini - rightWeight/totalWeight*rightGini; } /** * Compute and return gini index for a given distribution of a node. * * @param dist class distributions * @param total class distributions * @return Gini index of the class distributions */ protected double computeGini(double[] dist, double total) { if (total==0) return 0; double val = 0; for (int i=0; i= " + m_SplitValue); else text.append(m_Attribute.name() + "!=" + m_SplitString); } text.append(m_Successors[j].toString(level + 1)); } } return text.toString(); } /** * Compute size of the tree. * * @return size of the tree */ public int numNodes() { if (m_isLeaf) { return 1; } else { int size =1; for (int i=0;i")); result.addElement(new Option( "\tThe number of folds used in the minimal cost-complexity pruning.\n" + "\t(default 5)", "N", 1, "-N ")); result.addElement(new Option( "\tDon't use the minimal cost-complexity pruning.\n" + "\t(default yes).", "U", 0, "-U")); result.addElement(new Option( "\tDon't use the heuristic method for binary split.\n" + "\t(default true).", "H", 0, "-H")); result.addElement(new Option( "\tUse 1 SE rule to make pruning decision.\n" + "\t(default no).", "A", 0, "-A")); result.addElement(new Option( "\tPercentage of training data size (0-1].\n" + "\t(default 1).", "C", 1, "-C")); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -S <num>
   *  Random number seed.
   *  (default 1)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -M <min no>
   *  The minimal number of instances at the terminal nodes.
   *  (default 2)
* *
 -N <num folds>
   *  The number of folds used in the minimal cost-complexity pruning.
   *  (default 5)
* *
 -U
   *  Don't use the minimal cost-complexity pruning.
   *  (default yes).
* *
 -H
   *  Don't use the heuristic method for binary split.
   *  (default true).
* *
 -A
   *  Use 1 SE rule to make pruning decision.
   *  (default no).
* *
 -C
   *  Percentage of training data size (0-1].
   *  (default 1).
* * * @param options the list of options as an array of strings * @throws Exception if an options is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; super.setOptions(options); tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) setMinNumObj(Double.parseDouble(tmpStr)); else setMinNumObj(2); tmpStr = Utils.getOption('N', options); if (tmpStr.length()!=0) setNumFoldsPruning(Integer.parseInt(tmpStr)); else setNumFoldsPruning(5); setUsePrune(!Utils.getFlag('U',options)); setHeuristic(!Utils.getFlag('H',options)); setUseOneSE(Utils.getFlag('A',options)); tmpStr = Utils.getOption('C', options); if (tmpStr.length()!=0) setSizePer(Double.parseDouble(tmpStr)); else setSizePer(1); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the classifier. * * @return the current setting of the classifier */ public String[] getOptions() { int i; Vector result; String[] options; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-M"); result.add("" + getMinNumObj()); result.add("-N"); result.add("" + getNumFoldsPruning()); if (!getUsePrune()) result.add("-U"); if (!getHeuristic()) result.add("-H"); if (getUseOneSE()) result.add("-A"); result.add("-C"); result.add("" + getSizePer()); return (String[]) result.toArray(new String[result.size()]); } /** * Return an enumeration of the measure names. * * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector result = new Vector(); result.addElement("measureTreeSize"); return result.elements(); } /** * Return number of tree size. * * @return number of tree size */ public double measureTreeSize() { return numNodes(); } /** * Returns the value of the named measure. * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { return measureTreeSize(); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (Cart pruning)"); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNumObjTipText() { return "The minimal number of observations at the terminal nodes (default 2)."; } /** * Set minimal number of instances at the terminal nodes. * * @param value minimal number of instances at the terminal nodes */ public void setMinNumObj(double value) { m_minNumObj = value; } /** * Get minimal number of instances at the terminal nodes. * * @return minimal number of instances at the terminal nodes */ public double getMinNumObj() { return m_minNumObj; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldsPruningTipText() { return "The number of folds in the internal cross-validation (default 5)."; } /** * Set number of folds in internal cross-validation. * * @param value number of folds in internal cross-validation. */ public void setNumFoldsPruning(int value) { m_numFoldsPruning = value; } /** * Set number of folds in internal cross-validation. * * @return number of folds in internal cross-validation. */ public int getNumFoldsPruning() { return m_numFoldsPruning; } /** * Return the tip text for this property * * @return tip text for this property suitable for displaying in * the explorer/experimenter gui. */ public String usePruneTipText() { return "Use minimal cost-complexity pruning (default yes)."; } /** * Set if use minimal cost-complexity pruning. * * @param value if use minimal cost-complexity pruning */ public void setUsePrune(boolean value) { m_Prune = value; } /** * Get if use minimal cost-complexity pruning. * * @return if use minimal cost-complexity pruning */ public boolean getUsePrune() { return m_Prune; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui. */ public String heuristicTipText() { return "If heuristic search is used for binary split for nominal attributes " + "in multi-class problems (default yes)."; } /** * Set if use heuristic search for nominal attributes in multi-class problems. * * @param value if use heuristic search for nominal attributes in * multi-class problems */ public void setHeuristic(boolean value) { m_Heuristic = value; } /** * Get if use heuristic search for nominal attributes in multi-class problems. * * @return if use heuristic search for nominal attributes in * multi-class problems */ public boolean getHeuristic() {return m_Heuristic;} /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui. */ public String useOneSETipText() { return "Use the 1SE rule to make pruning decisoin."; } /** * Set if use the 1SE rule to choose final model. * * @param value if use the 1SE rule to choose final model */ public void setUseOneSE(boolean value) { m_UseOneSE = value; } /** * Get if use the 1SE rule to choose final model. * * @return if use the 1SE rule to choose final model */ public boolean getUseOneSE() { return m_UseOneSE; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui. */ public String sizePerTipText() { return "The percentage of the training set size (0-1, 0 not included)."; } /** * Set training set size. * * @param value training set size */ public void setSizePer(double value) { if ((value <= 0) || (value > 1)) System.err.println( "The percentage of the training set size must be in range 0 to 1 " + "(0 not included) - ignored!"); else m_SizePer = value; } /** * Get training set size. * * @return training set size */ public double getSizePer() { return m_SizePer; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 10491 $"); } /** * Main method. * @param args the options for the classifier */ public static void main(String[] args) { runClassifier(new SimpleCart(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy