weka.classifiers.trees.ft.FTtree Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* FTNode.java
* Copyright (C) 2007 University of Porto, Porto, Portugal
*
*/
package weka.classifiers.trees.ft;
import weka.classifiers.functions.SimpleLinearRegression;
import weka.classifiers.trees.j48.BinC45ModelSelection;
import weka.classifiers.trees.j48.BinC45Split;
import weka.classifiers.trees.j48.C45Split;
import weka.classifiers.trees.j48.ClassifierSplitModel;
import weka.classifiers.trees.j48.Distribution;
import weka.classifiers.trees.j48.ModelSelection;
import weka.classifiers.trees.j48.Stats;
import weka.classifiers.trees.lmt.LogisticBase;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;
import java.util.Vector;
/**
* Abstract class for Functional tree structure.
*
* @author Jo\~{a}o Gama
* @author Carlos Ferreira
*
* @version $Revision: 1.4 $
*/
public abstract class FTtree
extends LogisticBase {
/** for serialization */
static final long serialVersionUID = 1862737145870398755L;
/** Total number of training instances. */
protected double m_totalInstanceWeight;
/** Node id*/
protected int m_id;
/** ID of logistic model at leaf*/
protected int m_leafModelNum;
/**minimum number of instances at which a node is considered for splitting*/
protected int m_minNumInstances;
/**ModelSelection object (for splitting)*/
protected ModelSelection m_modelSelection;
/**Filter to convert nominal attributes to binary*/
protected NominalToBinary m_nominalToBinary;
/**Simple regression functions fit by LogitBoost at higher levels in the tree*/
protected SimpleLinearRegression[][] m_higherRegressions;
/**Number of simple regression functions fit by LogitBoost at higher levels in the tree*/
protected int m_numHigherRegressions = 0;
/**Number of instances at the node*/
protected int m_numInstances;
/**The ClassifierSplitModel (for splitting)*/
protected ClassifierSplitModel m_localModel;
/**Auxiliary copy ClassifierSplitModel (for splitting)*/
protected ClassifierSplitModel m_auxLocalModel;
/**Array of children of the node*/
protected FTtree[] m_sons;
/** Stores leaf class value */
protected int m_leafclass;
/**True if node is leaf*/
protected boolean m_isLeaf;
/**True if node has or splits on constructor */
protected boolean m_hasConstr=true;
/** Constructor error */
protected double m_constError=0;
/** Confidence level */
protected float m_CF = 0.10f;
/**
* Method for building a Functional Tree (only called for the root node).
* Grows an initial Functional Tree.
*
* @param data the data to train with
* @throws Exception if something goes wrong
*/
public abstract void buildClassifier(Instances data) throws Exception;
/**
* Abstract method for building the tree structure.
* Builds a logistic model, splits the node and recursively builds tree for child nodes.
* @param data the training data passed on to this node
* @param higherRegressions An array of regression functions produced by LogitBoost at higher
* levels in the tree. They represent a logistic regression model that is refined locally
* at this node.
* @param totalInstanceWeight the total number of training examples
* @param higherNumParameters effective number of parameters in the logistic regression model built
* in parent nodes
* @throws Exception if something goes wrong
*/
public abstract void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions,
double totalInstanceWeight, double higherNumParameters) throws Exception;
/**
* Abstract Method that prunes a tree using C4.5 pruning procedure.
*
* @exception Exception if something goes wrong
*/
public abstract double prune() throws Exception;
/** Inserts new attributes in current dataset or instance
*
* @exception Exception if something goes wrong
*/
protected Instances insertNewAttr(Instances data) throws Exception{
int i;
for (i=0; i 1) {
numLeaves -= (numEmptyLeaves - 1);
}
} else {
numLeaves = 1;
}
return numLeaves;
}
/**
* Merges two arrays of regression functions into one
* @param a1 one array
* @param a2 the other array
*
* @return an array that contains all entries from both input arrays
*/
protected SimpleLinearRegression[][] mergeArrays(SimpleLinearRegression[][] a1,
SimpleLinearRegression[][] a2){
int numModels1 = a1[0].length;
int numModels2 = a2[0].length;
SimpleLinearRegression[][] result =
new SimpleLinearRegression[m_numClasses][numModels1 + numModels2];
for (int i = 0; i < m_numClasses; i++)
for (int j = 0; j < numModels1; j++) {
result[i][j] = a1[i][j];
}
for (int i = 0; i < m_numClasses; i++)
for (int j = 0; j < numModels2; j++) result[i][j+numModels1] = a2[i][j];
return result;
}
/**
* Return a list of all inner nodes in the tree
* @return the list of nodes
*/
public Vector getNodes(){
Vector nodeList = new Vector();
getNodes(nodeList);
return nodeList;
}
/**
* Fills a list with all inner nodes in the tree
*
* @param nodeList the list to be filled
*/
public void getNodes(Vector nodeList) {
if (!m_isLeaf) {
nodeList.add(this);
for (int i = 0; i < m_sons.length; i++) m_sons[i].getNodes(nodeList);
}
}
/**
* Returns a numeric version of a set of instances.
* All nominal attributes are replaced by binary ones, and the class variable is replaced
* by a pseudo-class variable that is used by LogitBoost.
*/
protected Instances getNumericData(Instances train) throws Exception{
Instances filteredData = new Instances(train);
m_nominalToBinary = new NominalToBinary();
m_nominalToBinary.setInputFormat(filteredData);
filteredData = Filter.useFilter(filteredData, m_nominalToBinary);
return super.getNumericData(filteredData);
}
/**
* Computes the F-values of LogitBoost for an instance from the current logistic model at the node
* Note that this also takes into account the (partial) logistic model fit at higher levels in
* the tree.
* @param instance the instance
* @return the array of F-values
*/
protected double[] getFs(Instance instance) throws Exception{
double [] pred = new double [m_numClasses];
//Need to take into account partial model fit at higher levels in the tree (m_higherRegressions)
//and the part of the model fit at this node (m_regressions).
//Fs from m_regressions (use method of LogisticBase)
double [] instanceFs = super.getFs(instance);
//Fs from m_higherRegressions
for (int i = 0; i < m_numHigherRegressions; i++) {
double predSum = 0;
for (int j = 0; j < m_numClasses; j++) {
pred[j] = m_higherRegressions[j][i].classifyInstance(instance);
predSum += pred[j];
}
predSum /= m_numClasses;
for (int j = 0; j < m_numClasses; j++) {
instanceFs[j] += (pred[j] - predSum) * (m_numClasses - 1)
/ m_numClasses;
}
}
return instanceFs;
}
/**
*
* @param probsConst
*/
public int getConstError(double[] probsConst)
{
return Utils.maxIndex(probsConst);
}
/**
*Returns true if the logistic regression model at this node has changed compared to the
*one at the parent node.
*@return whether it has changed
*/
public boolean hasModels() {
return (m_numRegressions > 0);
}
/**
* Returns the class probabilities for an instance according to the logistic model at the node.
* @param instance the instance
* @return the array of probabilities
*/
public double[] modelDistributionForInstance(Instance instance) throws Exception {
//make copy and convert nominal attributes
instance = (Instance)instance.copy();
m_nominalToBinary.input(instance);
instance = m_nominalToBinary.output();
//set numeric pseudo-class
instance.setDataset(m_numericDataHeader);
return probs(getFs(instance));
}
/**
* Returns the class probabilities for an instance given by the Functional tree.
* @param instance the instance
* @return the array of probabilities
*/
public abstract double[] distributionForInstance(Instance instance) throws Exception;
/**
* Returns a description of the Functional tree (tree structure and logistic models)
* @return describing string
*/
public String toString(){
//assign numbers to logistic regression functions at leaves
assignLeafModelNumbers(0);
try{
StringBuffer text = new StringBuffer();
if (m_isLeaf && !m_hasConstr) {
text.append(": ");
text.append("Class"+"="+ m_leafclass);
//text.append("FT_"+m_leafModelNum+":"+getModelParameters());
} else {
if (m_isLeaf && m_hasConstr) {
text.append(": ");
text.append("FT_"+m_leafModelNum+":"+getModelParameters());
} else {
dumpTree(0,text);
}
}
text.append("\n\nNumber of Leaves : \t"+numLeaves()+"\n");
text.append("\nSize of the Tree : \t"+numNodes()+"\n");
//This prints logistic models after the tree, comment out if only tree should be printed
text.append(modelsToString());
return text.toString();
} catch (Exception e){
return "Can't print logistic model tree";
}
}
/**
* Returns the number of leaves (normal count).
* @return the number of leaves
*/
public int numLeaves() {
if (m_isLeaf) return 1;
int numLeaves = 0;
for (int i = 0; i < m_sons.length; i++) numLeaves += m_sons[i].numLeaves();
return numLeaves;
}
/**
* Returns the number of nodes.
* @return the number of nodes
*/
public int numNodes() {
if (m_isLeaf) return 1;
int numNodes = 1;
for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].numNodes();
return numNodes;
}
/**
* Returns a string describing the number of LogitBoost iterations performed at this node, the total number
* of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number
* of training examples at this node.
* @return the describing string
*/
public String getModelParameters(){
StringBuffer text = new StringBuffer();
int numModels = m_numRegressions+m_numHigherRegressions;
text.append(m_numRegressions+"/"+numModels+" ("+m_numInstances+")");
return text.toString();
}
/**
* Help method for printing tree structure.
*
* @throws Exception if something goes wrong
*/
protected void dumpTree(int depth,StringBuffer text)
throws Exception {
for (int i = 0; i < m_sons.length; i++) {
text.append("\n");
for (int j = 0; j < depth; j++)
text.append("| ");
if(m_hasConstr)
text.append(m_localModel.leftSide(m_train)+ "#" + m_id);
else
text.append(m_localModel.leftSide(m_train));
text.append(m_localModel.rightSide(i, m_train) );
if (m_sons[i].m_isLeaf && m_sons[i].m_hasConstr ) {
text.append(": ");
text.append("FT_"+m_sons[i].m_leafModelNum+":"+m_sons[i].getModelParameters());
}else {
if(m_sons[i].m_isLeaf && !m_sons[i].m_hasConstr)
{
text.append(": ");
text.append("Class"+"="+ m_sons[i].m_leafclass);
}
else{
m_sons[i].dumpTree(depth+1,text);
}
}
}
}
/**
* Assigns unique IDs to all nodes in the tree
*/
public int assignIDs(int lastID) {
int currLastID = lastID + 1;
m_id = currLastID;
if (m_sons != null) {
for (int i = 0; i < m_sons.length; i++) {
currLastID = m_sons[i].assignIDs(currLastID);
}
}
return currLastID;
}
/**
* Assigns numbers to the logistic regression models at the leaves of the tree
*/
public int assignLeafModelNumbers(int leafCounter) {
if (!m_isLeaf) {
m_leafModelNum = 0;
for (int i = 0; i < m_sons.length; i++){
leafCounter = m_sons[i].assignLeafModelNumbers(leafCounter);
}
} else {
leafCounter++;
m_leafModelNum = leafCounter;
}
return leafCounter;
}
/**
* Returns an array containing the coefficients of the logistic regression function at this node.
* @return the array of coefficients, first dimension is the class, second the attribute.
*/
protected double[][] getCoefficients(){
//Need to take into account partial model fit at higher levels in the tree (m_higherRegressions)
//and the part of the model fit at this node (m_regressions).
//get coefficients from m_regressions: use method of LogisticBase
double[][] coefficients = super.getCoefficients();
//get coefficients from m_higherRegressions:
double constFactor = (double)(m_numClasses - 1) / (double)m_numClasses; // (J - 1)/J
for (int j = 0; j < m_numClasses; j++) {
for (int i = 0; i < m_numHigherRegressions; i++) {
double slope = m_higherRegressions[j][i].getSlope();
double intercept = m_higherRegressions[j][i].getIntercept();
int attribute = m_higherRegressions[j][i].getAttributeIndex();
coefficients[j][0] += constFactor * intercept;
coefficients[j][attribute + 1] += constFactor * slope;
}
}
return coefficients;
}
/**
* Returns a string describing the logistic regression function at the node.
*/
public String modelsToString(){
StringBuffer text = new StringBuffer();
if (m_isLeaf && m_hasConstr) {
text.append("FT_"+m_leafModelNum+":"+super.toString());
}else{
if (!m_isLeaf && m_hasConstr) {
if (m_modelSelection instanceof BinC45ModelSelection){
text.append("FT_N"+((BinC45Split)m_localModel).attIndex()+"#"+m_id +":"+super.toString());
}else{
text.append("FT_N"+((C45Split)m_localModel).attIndex()+"#"+m_id +":"+super.toString());
}
for (int i = 0; i < m_sons.length; i++) {
text.append("\n"+ m_sons[i].modelsToString());
}
}else{
if (!m_isLeaf && !m_hasConstr)
{
for (int i = 0; i < m_sons.length; i++) {
text.append("\n"+ m_sons[i].modelsToString());
}
}else{
if (m_isLeaf && !m_hasConstr)
{
text.append("");
}
}
}
}
return text.toString();
}
/**
* Returns graph describing the tree.
*
* @throws Exception if something goes wrong
*/
public String graph() throws Exception {
StringBuffer text = new StringBuffer();
assignIDs(-1);
assignLeafModelNumbers(0);
text.append("digraph FTree {\n");
if (m_isLeaf && m_hasConstr) {
text.append("N" + m_id + " [label=\"FT_"+m_leafModelNum+":"+getModelParameters()+"\" " +
"shape=box style=filled");
text.append("]\n");
}else{
if (m_isLeaf && !m_hasConstr){
text.append("N" + m_id + " [label=\"Class="+m_leafclass+ "\" " +
"shape=box style=filled");
text.append("]\n");
}else {
text.append("N" + m_id
+ " [label=\"" +
Utils.backQuoteChars(m_localModel.leftSide(m_train)) + "\" ");
text.append("]\n");
graphTree(text);
}
}
return text.toString() +"}\n";
}
/**
* Helper function for graph description of tree
*
* @throws Exception if something goes wrong
*/
protected void graphTree(StringBuffer text) throws Exception {
for (int i = 0; i < m_sons.length; i++) {
text.append("N" + m_id
+ "->" +
"N" + m_sons[i].m_id +
" [label=\"" + Utils.backQuoteChars(m_localModel.rightSide(i,m_train).trim()) +
"\"]\n");
if (m_sons[i].m_isLeaf && m_sons[i].m_hasConstr) {
text.append("N" +m_sons[i].m_id + " [label=\"FT_"+m_sons[i].m_leafModelNum+":"+
m_sons[i].getModelParameters()+"\" " + "shape=box style=filled");
text.append("]\n");
} else {
if (m_sons[i].m_isLeaf && !m_sons[i].m_hasConstr) {
text.append("N" +m_sons[i].m_id + " [label=\"Class="+m_sons[i].m_leafclass+"\" " + "shape=box style=filled");
text.append("]\n");
}else{
text.append("N" + m_sons[i].m_id +
" [label=\""+ Utils.backQuoteChars(m_sons[i].m_localModel.leftSide(m_train)) +
"\" ");
text.append("]\n");
m_sons[i].graphTree(text);
}
}
}
}
/**
* Cleanup in order to save memory.
*/
public void cleanup() {
super.cleanup();
if (!m_isLeaf) {
for (int i = 0; i < m_sons.length; i++) m_sons[i].cleanup();
}
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.4 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy