weka.classifiers.trees.j48.InfoGainSplitCrit Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* InfoGainSplitCrit.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.j48;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for computing the information gain for a given distribution.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 1.10 $
*/
public final class InfoGainSplitCrit
extends EntropyBasedSplitCrit{
/** for serialization */
private static final long serialVersionUID = 4892105020180728499L;
/**
* This method is a straightforward implementation of the information
* gain criterion for the given distribution.
*/
public final double splitCritValue(Distribution bags) {
double numerator;
numerator = oldEnt(bags)-newEnt(bags);
// Splits with no gain are useless.
if (Utils.eq(numerator,0))
return Double.MAX_VALUE;
// We take the reciprocal value because we want to minimize the
// splitting criterion's value.
return bags.total()/numerator;
}
/**
* This method computes the information gain in the same way
* C4.5 does.
*
* @param bags the distribution
* @param totalNoInst weight of ALL instances (including the
* ones with missing values).
*/
public final double splitCritValue(Distribution bags, double totalNoInst) {
double numerator;
double noUnknown;
double unknownRate;
int i;
noUnknown = totalNoInst-bags.total();
unknownRate = noUnknown/totalNoInst;
numerator = (oldEnt(bags)-newEnt(bags));
numerator = (1-unknownRate)*numerator;
// Splits with no gain are useless.
if (Utils.eq(numerator,0))
return 0;
return numerator/bags.total();
}
/**
* This method computes the information gain in the same way
* C4.5 does.
*
* @param bags the distribution
* @param totalNoInst weight of ALL instances
* @param oldEnt entropy with respect to "no-split"-model.
*/
public final double splitCritValue(Distribution bags,double totalNoInst,
double oldEnt) {
double numerator;
double noUnknown;
double unknownRate;
int i;
noUnknown = totalNoInst-bags.total();
unknownRate = noUnknown/totalNoInst;
numerator = (oldEnt-newEnt(bags));
numerator = (1-unknownRate)*numerator;
// Splits with no gain are useless.
if (Utils.eq(numerator,0))
return 0;
return numerator/bags.total();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.10 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy