All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.j48.NBTreeModelSelection Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    NBTreeModelSelection.java
 *    Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees.j48;

import weka.core.Attribute;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.util.Enumeration;

/**
 * Class for selecting a NB tree split.
 *
 * @author Mark Hall ([email protected])
 * @version $Revision: 1.5 $
 */
public class NBTreeModelSelection
  extends ModelSelection {

  /** for serialization */
  private static final long serialVersionUID = 990097748931976704L;

  /** Minimum number of objects in interval. */
  private int m_minNoObj;               

  /** All the training data */
  private Instances m_allData; // 

  /**
   * Initializes the split selection method with the given parameters.
   *
   * @param minNoObj minimum number of instances that have to occur in at least two
   * subsets induced by split
   * @param allData FULL training dataset (necessary for
   * selection of split points).
   */
  public NBTreeModelSelection(int minNoObj, Instances allData) {
    m_minNoObj = minNoObj;
    m_allData = allData;
  }

  /**
   * Sets reference to training data to null.
   */
  public void cleanup() {

    m_allData = null;
  }

  /**
   * Selects NBTree-type split for the given dataset.
   */
  public final ClassifierSplitModel selectModel(Instances data){

    double globalErrors = 0;

    double minResult;
    double currentResult;
    NBTreeSplit [] currentModel;
    NBTreeSplit bestModel = null;
    NBTreeNoSplit noSplitModel = null;
    int validModels = 0;
    boolean multiVal = true;
    Distribution checkDistribution;
    Attribute attribute;
    double sumOfWeights;
    int i;
    
    try{
      // build the global model at this node
      noSplitModel = new NBTreeNoSplit();
      noSplitModel.buildClassifier(data);
      if (data.numInstances() < 5) {
	return noSplitModel;
      }

      // evaluate it
      globalErrors = noSplitModel.getErrors();
      if (globalErrors == 0) {
	return noSplitModel;
      }

      // Check if all Instances belong to one class or if not
      // enough Instances to split.
      checkDistribution = new Distribution(data);
      if (Utils.sm(checkDistribution.total(), m_minNoObj) ||
	  Utils.eq(checkDistribution.total(),
		   checkDistribution.perClass(checkDistribution.maxClass()))) {
	return noSplitModel;
      }

      // Check if all attributes are nominal and have a 
      // lot of values.
      if (m_allData != null) {
	Enumeration enu = data.enumerateAttributes();
	while (enu.hasMoreElements()) {
	  attribute = (Attribute) enu.nextElement();
	  if ((attribute.isNumeric()) ||
	      (Utils.sm((double)attribute.numValues(),
			(0.3*(double)m_allData.numInstances())))){
	    multiVal = false;
	    break;
	  }
	}
      }

      currentModel = new NBTreeSplit[data.numAttributes()];
      sumOfWeights = data.sumOfWeights();

      // For each attribute.
      for (i = 0; i < data.numAttributes(); i++){
	
	// Apart from class attribute.
	if (i != (data).classIndex()){
	  
	  // Get models for current attribute.
	  currentModel[i] = new NBTreeSplit(i,m_minNoObj,sumOfWeights);
	  currentModel[i].setGlobalModel(noSplitModel);
	  currentModel[i].buildClassifier(data);
	  
	  // Check if useful split for current attribute
	  // exists and check for enumerated attributes with 
	  // a lot of values.
	  if (currentModel[i].checkModel()){
	    validModels++;
	  }
	} else {
	  currentModel[i] = null;
	}
      }
      
      // Check if any useful split was found.
      if (validModels == 0) {
	return noSplitModel;
      }
      
     // Find "best" attribute to split on.
      minResult = globalErrors;
      for (i=0;i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy