All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.lmt.LMTNode Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    LMTNode.java
 *    Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees.lmt;

import weka.classifiers.Evaluation;
import weka.classifiers.functions.SimpleLinearRegression;
import weka.classifiers.trees.j48.ClassifierSplitModel;
import weka.classifiers.trees.j48.ModelSelection;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;

import java.util.Collections;
import java.util.Comparator;
import java.util.Vector;

/** 
 * Auxiliary class for list of LMTNodes
 */
class CompareNode 
    implements Comparator, RevisionHandler {

    /**
     * Compares its two arguments for order.
     * 
     * @param o1 first object
     * @param o2 second object
     * @return a negative integer, zero, or a positive integer as the first 
     *         argument is less than, equal to, or greater than the second.
     */
    public int compare(Object o1, Object o2) {		
	if ( ((LMTNode)o1).m_alpha < ((LMTNode)o2).m_alpha) return -1;
	if ( ((LMTNode)o1).m_alpha > ((LMTNode)o2).m_alpha) return 1;
	return 0;	
    }        
    
    /**
     * Returns the revision string.
     * 
     * @return		the revision
     */
    public String getRevision() {
      return RevisionUtils.extract("$Revision: 1.8 $");
    }
}

/**
 * Class for logistic model tree structure. 
 * 
 * 
 * @author Niels Landwehr 
 * @author Marc Sumner 
 * @version $Revision: 1.8 $
 */
public class LMTNode 
    extends LogisticBase {
  
    /** for serialization */
    static final long serialVersionUID = 1862737145870398755L;
    
    /** Total number of training instances. */
    protected double m_totalInstanceWeight;
    
    /** Node id*/
    protected int m_id;
    
    /** ID of logistic model at leaf*/
    protected int m_leafModelNum;
 
    /** Alpha-value (for pruning) at the node*/
    public double m_alpha;
    
    /** Weighted number of training examples currently misclassified by the logistic model at the node*/ 
    public double m_numIncorrectModel;

    /** Weighted number of training examples currently misclassified by the subtree rooted at the node*/
    public double m_numIncorrectTree;

    /**minimum number of instances at which a node is considered for splitting*/
    protected int m_minNumInstances;
    
    /**ModelSelection object (for splitting)*/
    protected ModelSelection m_modelSelection;     

    /**Filter to convert nominal attributes to binary*/
    protected NominalToBinary m_nominalToBinary;  
   
    /**Simple regression functions fit by LogitBoost at higher levels in the tree*/
    protected SimpleLinearRegression[][] m_higherRegressions;
    
    /**Number of simple regression functions fit by LogitBoost at higher levels in the tree*/
    protected int m_numHigherRegressions = 0;
    
    /**Number of folds for CART pruning*/
    protected static int m_numFoldsPruning = 5;

    /**Use heuristic that determines the number of LogitBoost iterations only once in the beginning? */
    protected boolean m_fastRegression;
    
    /**Number of instances at the node*/
    protected int m_numInstances;    

    /**The ClassifierSplitModel (for splitting)*/
    protected ClassifierSplitModel m_localModel; 
 
    /**Array of children of the node*/
    protected LMTNode[] m_sons;           

    /**True if node is leaf*/
    protected boolean m_isLeaf;                   

    /**
     * Constructor for logistic model tree node. 
     *
     * @param modelSelection selection method for local splitting model
     * @param numBoostingIterations sets the numBoostingIterations parameter
     * @param fastRegression sets the fastRegression parameter
     * @param errorOnProbabilities Use error on probabilities for stopping criterion of LogitBoost?
     * @param minNumInstances minimum number of instances at which a node is considered for splitting
     */
    public LMTNode(ModelSelection modelSelection, int numBoostingIterations, 
		   boolean fastRegression, 
                   boolean errorOnProbabilities, int minNumInstances,
                   double weightTrimBeta, boolean useAIC) {
	m_modelSelection = modelSelection;
	m_fixedNumIterations = numBoostingIterations;      
	m_fastRegression = fastRegression;
	m_errorOnProbabilities = errorOnProbabilities;
	m_minNumInstances = minNumInstances;
	m_maxIterations = 200;
        setWeightTrimBeta(weightTrimBeta);
        setUseAIC(useAIC);
    }         
    
    /**
     * Method for building a logistic model tree (only called for the root node).
     * Grows an initial logistic model tree and prunes it back using the CART pruning scheme.
     *
     * @param data the data to train with
     * @throws Exception if something goes wrong
     */
    public void buildClassifier(Instances data) throws Exception{
	
	//heuristic to avoid cross-validating the number of LogitBoost iterations
	//at every node: build standalone logistic model and take its optimum number
	//of iteration everywhere in the tree.
	if (m_fastRegression && (m_fixedNumIterations < 0)) m_fixedNumIterations = tryLogistic(data);
	
	//Need to cross-validate alpha-parameter for CART-pruning
	Instances cvData = new Instances(data);
	cvData.stratify(m_numFoldsPruning);
	
	double[][] alphas = new double[m_numFoldsPruning][];
	double[][] errors = new double[m_numFoldsPruning][];
	
	for (int i = 0; i < m_numFoldsPruning; i++) {
	    //for every fold, grow tree on training set...
	    Instances train = cvData.trainCV(m_numFoldsPruning, i);
	    Instances test = cvData.testCV(m_numFoldsPruning, i);
	    
	    buildTree(train, null, train.numInstances() , 0);	
	    
	    int numNodes = getNumInnerNodes();	   
	    alphas[i] = new double[numNodes + 2];
	    errors[i] = new double[numNodes + 2];
	    
	    //... then prune back and log alpha-values and errors on test set
	    prune(alphas[i], errors[i], test);	    	   
	}
	
	//build tree using all the data
	buildTree(data, null, data.numInstances(), 0);
	int numNodes = getNumInnerNodes();

	double[] treeAlphas = new double[numNodes + 2];	
	
	//prune back and log alpha-values     
	int iterations = prune(treeAlphas, null, null);
	
	double[] treeErrors = new double[numNodes + 2];
	
	for (int i = 0; i <= iterations; i++){
	    //compute midpoint alphas
	    double alpha = Math.sqrt(treeAlphas[i] * treeAlphas[i+1]);
	    double error = 0;
	    
	    //compute error estimate for final trees from the midpoint-alphas and the error estimates gotten in 
	    //the cross-validation
	    for (int k = 0; k < m_numFoldsPruning; k++) {
		int l = 0;
		while (alphas[k][l] <= alpha) l++;
		error += errors[k][l - 1];
	    }

	    treeErrors[i] = error;	    	  	   
	}
	
	//find best alpha 
	int best = -1;
	double bestError = Double.MAX_VALUE;
	for (int i = iterations; i >= 0; i--) {
	    if (treeErrors[i] < bestError) {
		bestError = treeErrors[i];
		best = i;
	    }	    
	}

	double bestAlpha = Math.sqrt(treeAlphas[best] * treeAlphas[best + 1]);      	
	
	//"unprune" final tree (faster than regrowing it)
	unprune();

	//CART-prune it with best alpha
	prune(bestAlpha);    	 		
	cleanup();	
    }

    /**
     * Method for building the tree structure.
     * Builds a logistic model, splits the node and recursively builds tree for child nodes.
     * @param data the training data passed on to this node
     * @param higherRegressions An array of regression functions produced by LogitBoost at higher 
     * levels in the tree. They represent a logistic regression model that is refined locally 
     * at this node.
     * @param totalInstanceWeight the total number of training examples
     * @param higherNumParameters effective number of parameters in the logistic regression model built
     * in parent nodes
     * @throws Exception if something goes wrong
     */
    public void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, 
			  double totalInstanceWeight, double higherNumParameters) throws Exception{

	//save some stuff
	m_totalInstanceWeight = totalInstanceWeight;
	m_train = new Instances(data);
	
	m_isLeaf = true;
	m_sons = null;
	
	m_numInstances = m_train.numInstances();
	m_numClasses = m_train.numClasses();				
	
	//init 
	m_numericData = getNumericData(m_train);		  
	m_numericDataHeader = new Instances(m_numericData, 0);
	
	m_regressions = initRegressions();
	m_numRegressions = 0;
	
	if (higherRegressions != null) m_higherRegressions = higherRegressions;
	else m_higherRegressions = new SimpleLinearRegression[m_numClasses][0];	

	m_numHigherRegressions = m_higherRegressions[0].length;	
        
        m_numParameters = higherNumParameters;
        
        //build logistic model
        if (m_numInstances >= m_numFoldsBoosting) {
            if (m_fixedNumIterations > 0){
                performBoosting(m_fixedNumIterations);
            } else if (getUseAIC()) {
                performBoostingInfCriterion();
            } else {
                performBoostingCV();
            }
        }
        
        m_numParameters += m_numRegressions;
	
	//only keep the simple regression functions that correspond to the selected number of LogitBoost iterations
	m_regressions = selectRegressions(m_regressions);

	boolean grow;
	//split node if more than minNumInstances...
	if (m_numInstances > m_minNumInstances) {
	    //split node: either splitting on class value (a la C4.5) or splitting on residuals
	    if (m_modelSelection instanceof ResidualModelSelection) {	
		//need ps/Ys/Zs/weights
		double[][] probs = getProbs(getFs(m_numericData));
		double[][] trainYs = getYs(m_train);
		double[][] dataZs = getZs(probs, trainYs);
		double[][] dataWs = getWs(probs, trainYs);
		m_localModel = ((ResidualModelSelection)m_modelSelection).selectModel(m_train, dataZs, dataWs);	
	    } else {
		m_localModel = m_modelSelection.selectModel(m_train);	
	    }
	    //... and valid split found
	    grow = (m_localModel.numSubsets() > 1);
	} else {
	    grow = false;
	}
	
	if (grow) {	
	    //create and build children of node
	    m_isLeaf = false;	    	    
	    Instances[] localInstances = m_localModel.split(m_train);	    
	    m_sons = new LMTNode[m_localModel.numSubsets()];
	    for (int i = 0; i < m_sons.length; i++) {
		m_sons[i] = new LMTNode(m_modelSelection, m_fixedNumIterations, 
					 m_fastRegression,  
					 m_errorOnProbabilities,m_minNumInstances,
                                        getWeightTrimBeta(), getUseAIC());
		//the "higherRegressions" (partial logistic model fit at higher levels in the tree) passed
		//on to the children are the "higherRegressions" at this node plus the regressions added
		//at this node (m_regressions).
		m_sons[i].buildTree(localInstances[i],
				  mergeArrays(m_regressions, m_higherRegressions), m_totalInstanceWeight, m_numParameters);		
		localInstances[i] = null;
	    }	    
	} 
    }

    /** 
     * Prunes a logistic model tree using the CART pruning scheme, given a 
     * cost-complexity parameter alpha.
     * 
     * @param alpha the cost-complexity measure  
     * @throws Exception if something goes wrong
     */
    public void prune(double alpha) throws Exception {
	
	Vector nodeList; 	
	CompareNode comparator = new CompareNode();	
	
	//determine training error of logistic models and subtrees, and calculate alpha-values from them
	modelErrors();
	treeErrors();
	calculateAlphas();
	
	//get list of all inner nodes in the tree
	nodeList = getNodes();
       		
	boolean prune = (nodeList.size() > 0);
	
	while (prune) {
	    
	    //select node with minimum alpha
	    LMTNode nodeToPrune = (LMTNode)Collections.min(nodeList,comparator);
	    
	    //want to prune if its alpha is smaller than alpha
	    if (nodeToPrune.m_alpha > alpha) break; 
	    
	    nodeToPrune.m_isLeaf = true;
	    nodeToPrune.m_sons = null;
	    
	    //update tree errors and alphas
	    treeErrors();
	    calculateAlphas();

	    nodeList = getNodes();
	    prune = (nodeList.size() > 0);   	  
	}  
    }

    /**
     * Method for performing one fold in the cross-validation of the cost-complexity parameter.
     * Generates a sequence of alpha-values with error estimates for the corresponding (partially pruned)
     * trees, given the test set of that fold.
     * @param alphas array to hold the generated alpha-values
     * @param errors array to hold the corresponding error estimates
     * @param test test set of that fold (to obtain error estimates)
     * @throws Exception if something goes wrong
     */
    public int prune(double[] alphas, double[] errors, Instances test) throws Exception {
	
	Vector nodeList; 
	
	CompareNode comparator = new CompareNode();	

	//determine training error of logistic models and subtrees, and calculate alpha-values from them
	modelErrors();
	treeErrors();
	calculateAlphas();

	//get list of all inner nodes in the tree
	nodeList = getNodes();
       
	boolean prune = (nodeList.size() > 0);           		

	//alpha_0 is always zero (unpruned tree)
	alphas[0] = 0;

	Evaluation eval;

	//error of unpruned tree
	if (errors != null) {
	    eval = new Evaluation(test);
	    eval.evaluateModel(this, test);
	    errors[0] = eval.errorRate(); 
	}	
       
	int iteration = 0;
	while (prune) {

	    iteration++;
	    
	    //get node with minimum alpha
	    LMTNode nodeToPrune = (LMTNode)Collections.min(nodeList,comparator);

	    nodeToPrune.m_isLeaf = true;
	    //Do not set m_sons null, want to unprune
	    
	    //get alpha-value of node
	    alphas[iteration] = nodeToPrune.m_alpha;
 	    
	    //log error
	    if (errors != null) {
		eval = new Evaluation(test);
		eval.evaluateModel(this, test);
		errors[iteration] = eval.errorRate(); 
	    }

	    //update errors/alphas
	    treeErrors();
	    calculateAlphas();

	    nodeList = getNodes();	   
	    prune = (nodeList.size() > 0);   	   
	} 
	
	//set last alpha 1 to indicate end
	alphas[iteration + 1] = 1.0;	
	return iteration;
    }


    /**
     *Method to "unprune" a logistic model tree.
     *Sets all leaf-fields to false.
     *Faster than re-growing the tree because the logistic models do not have to be fit again. 
     */
    protected void unprune() {
	if (m_sons != null) {
	    m_isLeaf = false;
	    for (int i = 0; i < m_sons.length; i++) m_sons[i].unprune();
	}
    }

    /**
     *Determines the optimum number of LogitBoost iterations to perform by building a standalone logistic 
     *regression function on the training data. Used for the heuristic that avoids cross-validating this
     *number again at every node.
     *@param data training instances for the logistic model
     *@throws Exception if something goes wrong
     */
    protected int tryLogistic(Instances data) throws Exception{
	
	//convert nominal attributes
	Instances filteredData = new Instances(data);	
	NominalToBinary nominalToBinary = new NominalToBinary();			
	nominalToBinary.setInputFormat(filteredData);
	filteredData = Filter.useFilter(filteredData, nominalToBinary);	
	
	LogisticBase logistic = new LogisticBase(0,true,m_errorOnProbabilities);
	
	//limit LogitBoost to 200 iterations (speed)
	logistic.setMaxIterations(200);
        logistic.setWeightTrimBeta(getWeightTrimBeta()); // Not in Marc's code. Added by Eibe.
        logistic.setUseAIC(getUseAIC());
	logistic.buildClassifier(filteredData);
	
	//return best number of iterations
	return logistic.getNumRegressions(); 
    }

    /**
     * Method to count the number of inner nodes in the tree
     * @return the number of inner nodes
     */
    public int getNumInnerNodes(){
	if (m_isLeaf) return 0;
	int numNodes = 1;
	for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].getNumInnerNodes();
	return numNodes;
    }

    /**
     * Returns the number of leaves in the tree.
     * Leaves are only counted if their logistic model has changed compared to the one of the parent node.
     * @return the number of leaves
     */
     public int getNumLeaves(){
	int numLeaves;
	if (!m_isLeaf) {
	    numLeaves = 0;
	    int numEmptyLeaves = 0;
	    for (int i = 0; i < m_sons.length; i++) {
		numLeaves += m_sons[i].getNumLeaves();
		if (m_sons[i].m_isLeaf && !m_sons[i].hasModels()) numEmptyLeaves++;
	    }
	    if (numEmptyLeaves > 1) {
		numLeaves -= (numEmptyLeaves - 1);
	    }
	} else {
	    numLeaves = 1;
	}	   
	return numLeaves;	
    }

    /**
     *Updates the numIncorrectModel field for all nodes. This is needed for calculating the alpha-values. 
     */
    public void modelErrors() throws Exception{
		
	Evaluation eval = new Evaluation(m_train);
		
	if (!m_isLeaf) {
	    m_isLeaf = true;
	    eval.evaluateModel(this, m_train);
	    m_isLeaf = false;
	    m_numIncorrectModel = eval.incorrect();
	    for (int i = 0; i < m_sons.length; i++) m_sons[i].modelErrors();
	} else {
	    eval.evaluateModel(this, m_train);
	    m_numIncorrectModel = eval.incorrect();
	}
    }
    
    /**
     *Updates the numIncorrectTree field for all nodes. This is needed for calculating the alpha-values. 
     */
    public void treeErrors(){
	if (m_isLeaf) {
	    m_numIncorrectTree = m_numIncorrectModel;
	} else {
	    m_numIncorrectTree = 0;
	    for (int i = 0; i < m_sons.length; i++) {
		m_sons[i].treeErrors();
		m_numIncorrectTree += m_sons[i].m_numIncorrectTree;
	    }	 
	}	
    }

    /**
     *Updates the alpha field for all nodes.
     */
    public void calculateAlphas() throws Exception {		
		
	if (!m_isLeaf) {	
	    double errorDiff = m_numIncorrectModel - m_numIncorrectTree;	    	    
	    
	    if (errorDiff <= 0) {
		//split increases training error (should not normally happen).
		//prune it instantly.
		m_isLeaf = true;
		m_sons = null;
		m_alpha = Double.MAX_VALUE;		
	    } else {
		//compute alpha
		errorDiff /= m_totalInstanceWeight;		
		m_alpha = errorDiff / (double)(getNumLeaves() - 1);
		
		for (int i = 0; i < m_sons.length; i++) m_sons[i].calculateAlphas();
	    }
	} else {	    
	    //alpha = infinite for leaves (do not want to prune)
	    m_alpha = Double.MAX_VALUE;
	}
    }
    
    /**
     * Merges two arrays of regression functions into one
     * @param a1 one array
     * @param a2 the other array
     *
     * @return an array that contains all entries from both input arrays
     */
    protected SimpleLinearRegression[][] mergeArrays(SimpleLinearRegression[][] a1,	
							   SimpleLinearRegression[][] a2){
	int numModels1 = a1[0].length;
	int numModels2 = a2[0].length;		
	
	SimpleLinearRegression[][] result =
	    new SimpleLinearRegression[m_numClasses][numModels1 + numModels2];
	
	for (int i = 0; i < m_numClasses; i++)
	    for (int j = 0; j < numModels1; j++) {
		result[i][j]  = a1[i][j];
	    }
	for (int i = 0; i < m_numClasses; i++)
	    for (int j = 0; j < numModels2; j++) result[i][j+numModels1] = a2[i][j];
	return result;
    }

    /**
     * Return a list of all inner nodes in the tree
     * @return the list of nodes
     */
    public Vector getNodes(){
	Vector nodeList = new Vector();
	getNodes(nodeList);
	return nodeList;
    }

    /**
     * Fills a list with all inner nodes in the tree
     * 
     * @param nodeList the list to be filled
     */
    public void getNodes(Vector nodeList) {
	if (!m_isLeaf) {
	    nodeList.add(this);
	    for (int i = 0; i < m_sons.length; i++) m_sons[i].getNodes(nodeList);
	}	
    }
    
    /**
     * Returns a numeric version of a set of instances.
     * All nominal attributes are replaced by binary ones, and the class variable is replaced
     * by a pseudo-class variable that is used by LogitBoost.
     */
    protected Instances getNumericData(Instances train) throws Exception{
	
	Instances filteredData = new Instances(train);	
	m_nominalToBinary = new NominalToBinary();			
	m_nominalToBinary.setInputFormat(filteredData);
	filteredData = Filter.useFilter(filteredData, m_nominalToBinary);	

	return super.getNumericData(filteredData);
    }

    /**
     * Computes the F-values of LogitBoost for an instance from the current logistic model at the node
     * Note that this also takes into account the (partial) logistic model fit at higher levels in 
     * the tree.
     * @param instance the instance
     * @return the array of F-values 
     */
    protected double[] getFs(Instance instance) throws Exception{
	
	double [] pred = new double [m_numClasses];
	
	//Need to take into account partial model fit at higher levels in the tree (m_higherRegressions) 
	//and the part of the model fit at this node (m_regressions).

	//Fs from m_regressions (use method of LogisticBase)
	double [] instanceFs = super.getFs(instance);		

	//Fs from m_higherRegressions
	for (int i = 0; i < m_numHigherRegressions; i++) {
	    double predSum = 0;
	    for (int j = 0; j < m_numClasses; j++) {
		pred[j] = m_higherRegressions[j][i].classifyInstance(instance);
		predSum += pred[j];
	    }
	    predSum /= m_numClasses;
	    for (int j = 0; j < m_numClasses; j++) {
		instanceFs[j] += (pred[j] - predSum) * (m_numClasses - 1) 
		    / m_numClasses;
	    }
	}
	return instanceFs; 
    }
    
    /**
     *Returns true if the logistic regression model at this node has changed compared to the
     *one at the parent node.
     *@return whether it has changed
     */
    public boolean hasModels() {
	return (m_numRegressions > 0);
    }

    /**
     * Returns the class probabilities for an instance according to the logistic model at the node.
     * @param instance the instance
     * @return the array of probabilities
     */
    public double[] modelDistributionForInstance(Instance instance) throws Exception {
	
	//make copy and convert nominal attributes
	instance = (Instance)instance.copy();		
	m_nominalToBinary.input(instance);
	instance = m_nominalToBinary.output();	
	
	//saet numeric pseudo-class
	instance.setDataset(m_numericDataHeader);		
	
	return probs(getFs(instance));
    }

    /**
     * Returns the class probabilities for an instance given by the logistic model tree.
     * @param instance the instance
     * @return the array of probabilities
     */
    public double[] distributionForInstance(Instance instance) throws Exception {
	
	double[] probs;
	
	if (m_isLeaf) {	    
	    //leaf: use logistic model
	    probs = modelDistributionForInstance(instance);
	} else {
	    //sort into appropiate child node
	    int branch = m_localModel.whichSubset(instance);
	    probs = m_sons[branch].distributionForInstance(instance);
	}  			
	return probs;
    }

    /**
     * Returns the number of leaves (normal count).
     * @return the number of leaves
     */
    public int numLeaves() {	
	if (m_isLeaf) return 1;	
	int numLeaves = 0;
	for (int i = 0; i < m_sons.length; i++) numLeaves += m_sons[i].numLeaves();
   	return numLeaves;
    }
    
    /**
     * Returns the number of nodes.
     * @return the number of nodes
     */
    public int numNodes() {
	if (m_isLeaf) return 1;	
	int numNodes = 1;
	for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].numNodes();
   	return numNodes;
    }

    /**
     * Returns a description of the logistic model tree (tree structure and logistic models)
     * @return describing string
     */
    public String toString(){	
	//assign numbers to logistic regression functions at leaves
	assignLeafModelNumbers(0);	
	try{
	    StringBuffer text = new StringBuffer();
	    
	    if (m_isLeaf) {
		text.append(": ");
		text.append("LM_"+m_leafModelNum+":"+getModelParameters());
	    } else {
		dumpTree(0,text);	    	    
	    }
	    text.append("\n\nNumber of Leaves  : \t"+numLeaves()+"\n");
	    text.append("\nSize of the Tree : \t"+numNodes()+"\n");	
	        
	    //This prints logistic models after the tree, comment out if only tree should be printed
	    text.append(modelsToString());
	    return text.toString();
	} catch (Exception e){
	    return "Can't print logistic model tree";
	}
	
        
    }

    /**
     * Returns a string describing the number of LogitBoost iterations performed at this node, the total number
     * of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number
     * of training examples at this node.
     * @return the describing string
     */
    public String getModelParameters(){
	
	StringBuffer text = new StringBuffer();
	int numModels = m_numRegressions+m_numHigherRegressions;
	text.append(m_numRegressions+"/"+numModels+" ("+m_numInstances+")");
	return text.toString();
    }
    
   
    /**
     * Help method for printing tree structure.
     *
     * @throws Exception if something goes wrong
     */
    protected void dumpTree(int depth,StringBuffer text) 
	throws Exception {
	
	for (int i = 0; i < m_sons.length; i++) {
	    text.append("\n");
	    for (int j = 0; j < depth; j++)
		text.append("|   ");
	    text.append(m_localModel.leftSide(m_train));
	    text.append(m_localModel.rightSide(i, m_train));
	    if (m_sons[i].m_isLeaf) {
		text.append(": ");
		text.append("LM_"+m_sons[i].m_leafModelNum+":"+m_sons[i].getModelParameters());
	    }else
		m_sons[i].dumpTree(depth+1,text);
	}
    }

    /**
     * Assigns unique IDs to all nodes in the tree
     */
    public int assignIDs(int lastID) {
	
	int currLastID = lastID + 1;
	
	m_id = currLastID;
	if (m_sons != null) {
	    for (int i = 0; i < m_sons.length; i++) {
		currLastID = m_sons[i].assignIDs(currLastID);
	    }
	}
	return currLastID;
    }
    
    /**
     * Assigns numbers to the logistic regression models at the leaves of the tree
     */
    public int assignLeafModelNumbers(int leafCounter) {
	if (!m_isLeaf) {
	    m_leafModelNum = 0;
	    for (int i = 0; i < m_sons.length; i++){
		leafCounter = m_sons[i].assignLeafModelNumbers(leafCounter);
	    }
	} else {
	    leafCounter++;
	    m_leafModelNum = leafCounter;
	} 
	return leafCounter;
    }

    /**
     * Returns an array containing the coefficients of the logistic regression function at this node.
     * @return the array of coefficients, first dimension is the class, second the attribute. 
     */
    protected double[][] getCoefficients(){
       
	//Need to take into account partial model fit at higher levels in the tree (m_higherRegressions) 
	//and the part of the model fit at this node (m_regressions).
	
	//get coefficients from m_regressions: use method of LogisticBase
	double[][] coefficients = super.getCoefficients();
	//get coefficients from m_higherRegressions:
        double constFactor = (double)(m_numClasses - 1) / (double)m_numClasses; // (J - 1)/J
	for (int j = 0; j < m_numClasses; j++) {
	    for (int i = 0; i < m_numHigherRegressions; i++) {		
		double slope = m_higherRegressions[j][i].getSlope();
		double intercept = m_higherRegressions[j][i].getIntercept();
		int attribute = m_higherRegressions[j][i].getAttributeIndex();
		coefficients[j][0] += constFactor * intercept;
		coefficients[j][attribute + 1] += constFactor * slope;
	    }
	}

	return coefficients;
    }
    
    /**
     * Returns a string describing the logistic regression function at the node.
     */
    public String modelsToString(){
	
	StringBuffer text = new StringBuffer();
	if (m_isLeaf) {
	    text.append("LM_"+m_leafModelNum+":"+super.toString());
	} else {
	    for (int i = 0; i < m_sons.length; i++) {
		text.append("\n"+m_sons[i].modelsToString());
	    }
	}
	return text.toString();	    
    }

    /**
     * Returns graph describing the tree.
     *
     * @throws Exception if something goes wrong
     */
    public String graph() throws Exception {
	
	StringBuffer text = new StringBuffer();
	
	assignIDs(-1);
	assignLeafModelNumbers(0);
	text.append("digraph LMTree {\n");
	if (m_isLeaf) {
	    text.append("N" + m_id + " [label=\"LM_"+m_leafModelNum+":"+getModelParameters()+"\" " + 
			"shape=box style=filled");
	    text.append("]\n");
	}else {
	    text.append("N" + m_id 
			+ " [label=\"" + 
			Utils.backQuoteChars(m_localModel.leftSide(m_train)) + "\" ");
	    text.append("]\n");
	    graphTree(text);
	}
    
	return text.toString() +"}\n";
    }

    /**
     * Helper function for graph description of tree
     *
     * @throws Exception if something goes wrong
     */
    private void graphTree(StringBuffer text) throws Exception {
	
	for (int i = 0; i < m_sons.length; i++) {
	    text.append("N" + m_id  
			+ "->" + 
			"N" + m_sons[i].m_id +
			" [label=\"" + Utils.backQuoteChars(m_localModel.rightSide(i,m_train).trim()) + 
			"\"]\n");
	    if (m_sons[i].m_isLeaf) {
		text.append("N" +m_sons[i].m_id + " [label=\"LM_"+m_sons[i].m_leafModelNum+":"+
			    m_sons[i].getModelParameters()+"\" " + "shape=box style=filled");
		text.append("]\n");
	    } else {
		text.append("N" + m_sons[i].m_id +
			    " [label=\""+ Utils.backQuoteChars(m_sons[i].m_localModel.leftSide(m_train)) + 
			    "\" ");
		text.append("]\n");
		m_sons[i].graphTree(text);
	    }
	}
    } 
    
    /**
     * Cleanup in order to save memory.
     */
    public void cleanup() {
	super.cleanup();
	if (!m_isLeaf) {
	    for (int i = 0; i < m_sons.length; i++) m_sons[i].cleanup();
	}
    }
    
    /**
     * Returns the revision string.
     * 
     * @return		the revision
     */
    public String getRevision() {
      return RevisionUtils.extract("$Revision: 1.8 $");
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy