All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.core.neighboursearch.CoverTree Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * CoverTree.java
 * Copyright (C) 2006 Alina Beygelzimer and Sham Kakade and John Langford
 */

package weka.core.neighboursearch;

import weka.core.DistanceFunction;
import weka.core.EuclideanDistance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.converters.CSVLoader;
import weka.core.neighboursearch.covertrees.Stack;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.List;
import java.util.Vector;

/**
 
 * Class implementing the CoverTree datastructure.
* The class is very much a translation of the c source code made available by the authors.
*
* For more information and original source code see:
*
* Alina Beygelzimer, Sham Kakade, John Langford: Cover trees for nearest neighbor. In: ICML'06: Proceedings of the 23rd international conference on Machine learning, New York, NY, USA, 97-104, 2006. *

* * BibTeX: *

 * @inproceedings{Beygelzimer2006,
 *    address = {New York, NY, USA},
 *    author = {Alina Beygelzimer and Sham Kakade and John Langford},
 *    booktitle = {ICML'06: Proceedings of the 23rd international conference on Machine learning},
 *    pages = {97-104},
 *    publisher = {ACM Press},
 *    title = {Cover trees for nearest neighbor},
 *    year = {2006},
 *    location = {Pittsburgh, Pennsylvania},
 *    HTTP = {http://hunch.net/\~jl/projects/cover_tree/cover_tree.html}
 * }
 * 
*

* * Valid options are:

* *

 -B <value>
 *  Set base of the expansion constant
 *  (default = 1.3).
* * * @author Alina Beygelzimer (original C++ code) * @author Sham Kakade (original C++ code) * @author John Langford (original C++ code) * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) (Java port) * @version $Revision: 1.4 $ */ public class CoverTree extends NearestNeighbourSearch implements TechnicalInformationHandler { /** for serialization. */ private static final long serialVersionUID = 7617412821497807586L; /** * class representing a node of the cover tree. * * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 1.4 $ */ public class CoverTreeNode implements Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = 1808760031169036512L; /** ID for the node. */ private int nodeid; /** Index of the instance represented by this node in the index array. */ private Integer idx; /** The distance of the furthest descendant of the node. */ private double max_dist; // The maximum distance to any grandchild. /** The distance to the nodes parent. */ private double parent_dist; // The distance to the parent. /** The children of the node. */ private Stack children; /** The number of children node has. */ private int num_children; // The number of children. /** The min i that makes base^i <= max_dist. */ private int scale; // Essentially, an upper bound on the distance to any child. /** Constructor for the class. */ public CoverTreeNode() { } /** * Constructor. * @param i The index of the Instance this node is * associated with. * @param md The distance of the furthest descendant. * @param pd The distance of the node to its parent. * @param childs Children of the node in a stack. * @param numchilds The number of children of the * node. * @param s The scale/level of the node in the tree. */ public CoverTreeNode(Integer i, double md, double pd, Stack childs, int numchilds, int s) { idx = i; max_dist = md; parent_dist = pd; children = childs; num_children = numchilds; scale = s; } /** Returns the instance represented by the node. * @return The instance represented by the node. */ public Instance p() { return m_Instances.instance(idx); } /** Returns whether if the node is a leaf or not. * @return true if the node is a leaf node. */ public boolean isALeaf() { return num_children==0; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } } /** * Private class holding a point's distance to the current reference * point p. * * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 1.4 $ */ private class DistanceNode implements RevisionHandler { /** * The last distance is to the current reference point * (potential current parent). The previous ones are * to reference points that were previously looked at * (all potential ancestors). */ Stack dist; /** The index of the instance represented by this node. */ Integer idx; /** * Returns the instance represent by this DistanceNode. * @return The instance represented by this node. */ public Instance q() { return m_Instances.instance(idx); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } } /** The euclidean distance function to use. */ protected EuclideanDistance m_EuclideanDistance; { // to make sure we have only one object of EuclideanDistance if (m_DistanceFunction instanceof EuclideanDistance) m_EuclideanDistance = (EuclideanDistance) m_DistanceFunction; else m_DistanceFunction = m_EuclideanDistance = new EuclideanDistance(); } /** The root node. */ protected CoverTreeNode m_Root; /** * Array holding the distances of the nearest neighbours. It is filled up * both by nearestNeighbour() and kNearestNeighbours(). */ protected double [] m_DistanceList; /** Number of nodes in the tree. */ protected int m_NumNodes, m_NumLeaves, m_MaxDepth; /** Tree Stats variables. */ protected TreePerformanceStats m_TreeStats = null; /** * The base of our expansion constant. In other words the 2 in 2^i used * in covering tree and separation invariants of a cover tree. P.S.: In * paper it's suggested the separation invariant is relaxed in batch * construction. */ protected double m_Base = 1.3; /** * if we have base 2 then this can be viewed as 1/ln(2), which can be * used later on to do il2*ln(d) instead of ln(d)/ln(2), to get log2(d), * in get_scale method. */ protected double il2 = 1.0 / Math.log(m_Base); /** * default constructor. */ public CoverTree() { super(); if(getMeasurePerformance()) m_Stats = m_TreeStats = new TreePerformanceStats(); } /** * Returns a string describing this nearest neighbour search algorithm. * * @return a description of the algorithm for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Class implementing the CoverTree datastructure.\n" + "The class is very much a translation of the c source code made " + "available by the authors.\n\n" + "For more information and original source code see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Alina Beygelzimer and Sham Kakade and John Langford"); result.setValue(Field.TITLE, "Cover trees for nearest neighbor"); result.setValue(Field.BOOKTITLE, "ICML'06: Proceedings of the 23rd international conference on Machine learning"); result.setValue(Field.PAGES, "97-104"); result.setValue(Field.YEAR, "2006"); result.setValue(Field.PUBLISHER, "ACM Press"); result.setValue(Field.ADDRESS, "New York, NY, USA"); result.setValue(Field.LOCATION, "Pittsburgh, Pennsylvania"); result.setValue(Field.HTTP, "http://hunch.net/~jl/projects/cover_tree/cover_tree.html"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option( "\tSet base of the expansion constant\n" + "\t(default = 1.3).", "B", 1, "-B ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -B <value>
   *  Set base of the expansion constant
   *  (default = 1.3).
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { super.setOptions(options); String optionString = Utils.getOption('B', options); if (optionString.length() != 0) setBase(Double.parseDouble(optionString)); else setBase(1.3); } /** * Gets the current settings of KDtree. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-B"); result.add("" + getBase()); return result.toArray(new String[result.size()]); } /** * Returns the distance/value of a given scale/level. I.e. the value of * base^i (e.g. 2^i). * * @param s the level/scale * @return base^s */ protected double dist_of_scale(int s) { return Math.pow(m_Base, s); } /** * Finds the scale/level of a given value. I.e. the "i" in base^i. * * @param d the value whose scale/level is to be determined. * @return the scale/level of the given value. */ protected int get_scale(double d) { return (int) Math.ceil(il2 * Math.log(d)); } /** * Creates a new internal node for a given Instance/point p. * @param idx The index of the instance the node represents. * @return Newly created CoverTreeNode. */ protected CoverTreeNode new_node(Integer idx) { // const point &p) CoverTreeNode new_node = new CoverTreeNode(); new_node.idx = idx; return new_node; } /** * Creates a new leaf node for a given Instance/point p. * @param idx The index of the instance this leaf node * represents. * @return Newly created leaf CoverTreeNode. */ protected CoverTreeNode new_leaf(Integer idx) { // (const point &p) CoverTreeNode new_leaf = new CoverTreeNode(idx, 0.0, 0.0, null, 0, 100); return new_leaf; } /** * Returns the max distance of the reference point p in current node to * it's children nodes. * @param v The stack of DistanceNode objects. * @return Distance of the furthest child. */ protected double max_set(Stack v) { // rename to // maxChildDist double max = 0.0; for (int i = 0; i < v.length; i++) { DistanceNode n = v.element(i); if (max < n.dist.element(n.dist.length - 1).floatValue()) { // v[i].dist.last()) max = n.dist.element(n.dist.length - 1).floatValue(); // v[i].dist.last(); } } return max; } /** * Splits a given point_set into near and far based on the given * scale/level. All points with distance > base^max_scale would be moved * to far set. In other words, all those points that are not covered by the * next child ball of a point p (ball made of the same point p but of * smaller radius at the next lower level) are removed from the supplied * current point_set and put into far_set. * * @param point_set The supplied set from which all far points * would be removed. * @param far_set The set in which all far points having distance * > base^max_scale would be put into. * @param max_scale The given scale based on which the distances * of points are judged to be far or near. */ protected void split(Stack point_set, Stack far_set, int max_scale) { int new_index = 0; double fmax = dist_of_scale(max_scale); for (int i = 0; i < point_set.length; i++) { DistanceNode n = point_set.element(i); if (n.dist.element(n.dist.length - 1).doubleValue() <= fmax) { point_set.set(new_index++, point_set.element(i)); } else far_set.push(point_set.element(i)); // point_set[i]); } List l = new java.util.LinkedList(); for (int i = 0; i < new_index; i++) l.add(point_set.element(i)); //removing all and adding only the near points point_set.clear(); point_set.addAll(l); // point_set.index=new_index; } /** * Moves all the points in point_set covered by (the ball of) new_point * into new_point_set, based on the given scale/level. * * @param point_set The supplied set of instances from which * all points covered by new_point will be removed. * @param new_point_set The set in which all points covered by * new_point will be put into. * @param new_point The given new point. * @param max_scale The scale based on which distances are * judged (radius of cover ball is calculated). */ protected void dist_split(Stack point_set, Stack new_point_set, DistanceNode new_point, int max_scale) { int new_index = 0; double fmax = dist_of_scale(max_scale); for (int i = 0; i < point_set.length; i++) { double new_d = Math.sqrt(m_DistanceFunction.distance(new_point.q(), point_set.element(i).q(), fmax*fmax)); if (new_d <= fmax) { point_set.element(i).dist.push(new_d); new_point_set.push(point_set.element(i)); } else point_set.set(new_index++, point_set.element(i)); } List l = new java.util.LinkedList(); for (int i = 0; i < new_index; i++) l.add(point_set.element(i)); point_set.clear(); point_set.addAll(l); } /** * Creates a cover tree recursively using batch insert method. * * @param p The index of the instance from which to create the * first node. All other points will be inserted beneath this node * for p. * @param max_scale The current scale/level where the node is to be * created (Also determines the radius of the cover balls created at * this level). * @param top_scale The max scale in the whole tree. * @param point_set The set of unprocessed points from which child nodes * need to be created. * @param consumed_set The set of processed points from which child * nodes have already been created. This would be used to find the * radius of the cover ball of p. * @return the node of cover tree created with p. */ protected CoverTreeNode batch_insert(Integer p, int max_scale, // current // scale/level int top_scale, // max scale/level for this dataset Stack point_set, // set of points that are nearer to p // [will also contain returned unused // points] Stack consumed_set) // to return the set of points that have // been used to calc. max_dist to a // descendent // Stack> stack) //may not be needed { if (point_set.length == 0) { CoverTreeNode leaf = new_leaf(p); leaf.nodeid = m_NumNodes; m_NumNodes++; // incrementing node count m_NumLeaves++; // incrementing leaves count return leaf; } else { double max_dist = max_set(point_set); // O(|point_set|) the max dist // in point_set to point "p". int next_scale = Math.min(max_scale - 1, get_scale(max_dist)); if (next_scale == Integer.MIN_VALUE) { // We have points with distance // 0. if max_dist is 0. Stack children = new Stack(); CoverTreeNode leaf = new_leaf(p); leaf.nodeid = m_NumNodes; children.push(leaf); m_NumLeaves++; m_NumNodes++; // incrementing node and leaf count while (point_set.length > 0) { DistanceNode tmpnode = point_set.pop(); leaf = new_leaf(tmpnode.idx); leaf.nodeid = m_NumNodes; children.push(leaf); m_NumLeaves++; m_NumNodes++; // incrementing node and leaf count consumed_set.push(tmpnode); } CoverTreeNode n = new_node(p); // make a new node out of p and assign // it the children. n.nodeid = m_NumNodes; m_NumNodes++; // incrementing node count n.scale = 100; // A magic number meant to be larger than all scales. n.max_dist = 0; // since all points have distance 0 to p n.num_children = children.length; n.children = children; return n; } else { Stack far = new Stack(); split(point_set, far, max_scale); // O(|point_set|) CoverTreeNode child = batch_insert(p, next_scale, top_scale, point_set, consumed_set); if (point_set.length == 0) { // not creating any node in this // recursive call // push(stack,point_set); point_set.replaceAllBy(far); // point_set=far; return child; } else { CoverTreeNode n = new_node(p); n.nodeid = m_NumNodes; m_NumNodes++; // incrementing node count Stack children = new Stack(); children.push(child); while (point_set.length != 0) { // O(|point_set| * num_children) Stack new_point_set = new Stack(); Stack new_consumed_set = new Stack(); DistanceNode tmpnode = point_set.pop(); double new_dist = tmpnode.dist.last(); consumed_set.push(tmpnode); // putting points closer to new_point into new_point_set (and // removing them from point_set) dist_split(point_set, new_point_set, tmpnode, max_scale); // O(|point_saet|) // putting points closer to new_point into new_point_set (and // removing them from far) dist_split(far, new_point_set, tmpnode, max_scale); // O(|far|) CoverTreeNode new_child = batch_insert(tmpnode.idx, next_scale, top_scale, new_point_set, new_consumed_set); new_child.parent_dist = new_dist; children.push(new_child); // putting the unused points from new_point_set back into // point_set and far double fmax = dist_of_scale(max_scale); tmpnode = null; for (int i = 0; i < new_point_set.length; i++) { // O(|new_point_set|) tmpnode = new_point_set.element(i); tmpnode.dist.pop(); if (tmpnode.dist.last() <= fmax) point_set.push(tmpnode); else far.push(tmpnode); } // putting the points consumed while recursing for new_point // into consumed_set tmpnode = null; for (int i = 0; i < new_consumed_set.length; i++) { // O(|new_point_set|) tmpnode = new_consumed_set.element(i); tmpnode.dist.pop(); consumed_set.push(tmpnode); } }// end while(point_size.size!=0) point_set.replaceAllBy(far); // point_set=far; n.scale = top_scale - max_scale; n.max_dist = max_set(consumed_set); n.num_children = children.length; n.children = children; return n; }// end else if(pointset!=0) }// end else if(next_scale != -214.... }// end else if(pointset!=0) } /** * Builds the tree on the given set of instances. * P.S.: For internal use only. Outside classes * should call setInstances(). * @param insts The instances on which to build * the cover tree. * @throws Exception If the supplied set of * Instances is empty, or if there are missing * values. */ protected void buildCoverTree(Instances insts) throws Exception { if (insts.numInstances() == 0) throw new Exception( "CoverTree: Empty set of instances. Cannot build tree."); checkMissing(insts); if (m_EuclideanDistance == null) m_DistanceFunction = m_EuclideanDistance = new EuclideanDistance(insts); else m_EuclideanDistance.setInstances(insts); Stack point_set = new Stack(); Stack consumed_set = new Stack(); Instance point_p = insts.instance(0); int p_idx = 0; double max_dist=-1, dist=0.0; Instance max_q=point_p; for (int i = 1; i < insts.numInstances(); i++) { DistanceNode temp = new DistanceNode(); temp.dist = new Stack(); dist = Math.sqrt(m_DistanceFunction.distance(point_p, insts.instance(i), Double.POSITIVE_INFINITY)); if(dist > max_dist) { max_dist = dist; max_q = insts.instance(i); } temp.dist.push(dist); temp.idx = i; point_set.push(temp); } max_dist = max_set(point_set); m_Root = batch_insert(p_idx, get_scale(max_dist), get_scale(max_dist), point_set, consumed_set); } /*********************************NNSearch related stuff********************/ /** * A class for a heap to store the nearest k neighbours to an instance. * The heap also takes care of cases where multiple neighbours are the same * distance away. * i.e. the minimum size of the heap is k. * * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 1.4 $ */ protected class MyHeap implements RevisionHandler { /** the heap. */ MyHeapElement m_heap[] = null; /** * constructor. * @param maxSize the maximum size of the heap */ public MyHeap(int maxSize) { if((maxSize%2)==0) maxSize++; m_heap = new MyHeapElement[maxSize+1]; m_heap[0] = new MyHeapElement(-1); } /** * returns the size of the heap. * @return the size */ public int size() { return m_heap[0].index; } /** * peeks at the first element. * @return the first element */ public MyHeapElement peek() { return m_heap[1]; } /** * returns the first element and removes it from the heap. * @return the first element * @throws Exception if no elements in heap */ public MyHeapElement get() throws Exception { if(m_heap[0].index==0) throw new Exception("No elements present in the heap"); MyHeapElement r = m_heap[1]; m_heap[1] = m_heap[m_heap[0].index]; m_heap[0].index--; downheap(); return r; } /** * adds the distance value to the heap. * * @param d the distance value * @throws Exception if the heap gets too large */ public void put(double d) throws Exception { if((m_heap[0].index+1)>(m_heap.length-1)) throw new Exception("the number of elements cannot exceed the "+ "initially set maximum limit"); m_heap[0].index++; m_heap[m_heap[0].index] = new MyHeapElement(d); upheap(); } /** * Puts an element by substituting it in place of * the top most element. * * @param d The distance value. * @throws Exception If distance is smaller than that of the head * element. */ public void putBySubstitute(double d) throws Exception { MyHeapElement head = get(); put(d); if(head.distance == m_heap[1].distance) { putKthNearest(head.distance); } else if(head.distance > m_heap[1].distance) { m_KthNearest = null; m_KthNearestSize = 0; initSize = 10; } else if(head.distance < m_heap[1].distance) { throw new Exception("The substituted element is greater than the "+ "head element. put() should have been called "+ "in place of putBySubstitute()"); } } /** the kth nearest ones. */ MyHeapElement m_KthNearest[] = null; /** The number of kth nearest elements. */ int m_KthNearestSize = 0; /** the initial size of the heap. */ int initSize=10; /** * returns the number of k nearest. * * @return the number of k nearest * @see #m_KthNearestSize */ public int noOfKthNearest() { return m_KthNearestSize; } /** * Stores kth nearest elements (if there are * more than one). * @param d the distance */ public void putKthNearest(double d) { if(m_KthNearest==null) { m_KthNearest = new MyHeapElement[initSize]; } if(m_KthNearestSize>=m_KthNearest.length) { initSize += initSize; MyHeapElement temp[] = new MyHeapElement[initSize]; System.arraycopy(m_KthNearest, 0, temp, 0, m_KthNearest.length); m_KthNearest = temp; } m_KthNearest[m_KthNearestSize++] = new MyHeapElement(d); } /** * returns the kth nearest element or null if none there. * * @return the kth nearest element */ public MyHeapElement getKthNearest() { if(m_KthNearestSize==0) return null; m_KthNearestSize--; return m_KthNearest[m_KthNearestSize]; } /** * performs upheap operation for the heap * to maintian its properties. */ protected void upheap() { int i = m_heap[0].index; MyHeapElement temp; while( i > 1 && m_heap[i].distance>m_heap[i/2].distance) { temp = m_heap[i]; m_heap[i] = m_heap[i/2]; i = i/2; m_heap[i] = temp; //this is i/2 done here to avoid another division. } } /** * performs downheap operation for the heap * to maintian its properties. */ protected void downheap() { int i = 1; MyHeapElement temp; while( ( (2*i) <= m_heap[0].index && m_heap[i].distance < m_heap[2*i].distance ) || ( (2*i+1) <= m_heap[0].index && m_heap[i].distance < m_heap[2*i+1].distance) ) { if((2*i+1)<=m_heap[0].index) { if(m_heap[2*i].distance>m_heap[2*i+1].distance) { temp = m_heap[i]; m_heap[i] = m_heap[2*i]; i = 2*i; m_heap[i] = temp; } else { temp = m_heap[i]; m_heap[i] = m_heap[2*i+1]; i = 2*i+1; m_heap[i] = temp; } } else { temp = m_heap[i]; m_heap[i] = m_heap[2*i]; i = 2*i; m_heap[i] = temp; } } } /** * returns the total size. * * @return the total size */ public int totalSize() { return size()+noOfKthNearest(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } } /** * A class for storing data about a neighboring instance. * * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 1.4 $ */ protected class MyHeapElement implements RevisionHandler { /** the distance. */ public double distance; /** * The index of this element. Also used as * the size of the heap in the first element. */ int index = 0; /** * constructor. * * @param d the distance */ public MyHeapElement(double d) { distance = d; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } } /** * stores a CoverTreeNode and its distance to the current query node. * * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 1.4 $ */ private class d_node implements RevisionHandler { /** The distance of the node's point to the query point. */ double dist; /** The node. */ CoverTreeNode n; /** * Constructor. * @param d The distance of the node to the query. * @param node The node. */ public d_node(double d, CoverTreeNode node) { dist = d; n = node; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } }; /** * Initializes a heap with k values of the the given upper_bound. * * @param heap The heap to put values into. * @param upper_bound The value to put into heap (the value with * which it should be initialized). * @param k The number of times upper_bound should be put into * heap for initialization. * @throws Exception If there is some problem in initializing * the heap (if k > size of the heap). */ protected void setter(MyHeap heap, double upper_bound, final int k) throws Exception { if(heap.size()>0) heap.m_heap[0].index=0; while(heap.size() < k) { heap.put(upper_bound); } } /** * Replaces the current top/max value in the heap with the new one. * The new max value should be <= the old one. * * @param upper_bound The heap. * @param new_bound The new value that should replace the old top one. * @throws Exception if the new value is greater than the old value. */ protected void update(MyHeap upper_bound, double new_bound) throws Exception { upper_bound.putBySubstitute(new_bound); } /** * Returns a cover set for a given level/scale. * A cover set for a level consists of nodes whose * Instances/centres are which are inside the query * ball at that level. If no cover set exists for the * given level (if it is the first time it is going * to be used), than a new one is created. * * @param idx The level/scale for which the cover set * is required. * @param cover_sets The covers sets. Consists of stack * of a stack of d_node objects. * @return The cover set for the given level/scale. */ protected Stack getCoverSet(int idx, Stack> cover_sets) { if (cover_sets.length <= idx) { int i = cover_sets.length - 1; while (i < idx) { i++; Stack new_cover_set = new Stack(); cover_sets.push(new_cover_set); } } return cover_sets.element(idx); } /** * Copies the contents of one zero set to the other. This * is required if we are going to inspect child of some query node * (if the queries are given in batch in the form of a cover tree). * Only those nodes are copied to the new zero set that are inside * the query ball of query_chi. * P.S.: A zero set is a set of all leaf nodes that are found * to be inside the query ball. * * @param query_chi The child node of our query node that we are * going to inspect. * @param new_upper_k New heap that will store the distances of the * k NNs for query_chi. * @param zero_set The zero set of query_chi's parent that needs * to be copied. * @param new_zero_set The new zero set of query_chi where old zero * sets need to be copied into. * @throws Exception If there is some problem. */ protected void copy_zero_set(CoverTreeNode query_chi, MyHeap new_upper_k, Stack zero_set, Stack new_zero_set) throws Exception { new_zero_set.clear(); d_node ele; for (int i = 0; i < zero_set.length; i++) { ele = zero_set.element(i); double upper_dist = new_upper_k.peek().distance + query_chi.max_dist; if (shell(ele.dist, query_chi.parent_dist, upper_dist)) { double d = Math.sqrt(m_DistanceFunction.distance(query_chi.p(), ele.n .p(), upper_dist * upper_dist)); if (m_TreeStats != null) m_TreeStats.incrPointCount(); if (d <= upper_dist) { if (d < new_upper_k.peek().distance) update(new_upper_k, d); d_node temp = new d_node(d, ele.n); new_zero_set.push(temp); if (m_TreeStats != null) m_TreeStats.incrLeafCount(); }//end if(d> cover_sets, Stack> new_cover_sets, int current_scale, int max_scale) throws Exception { new_cover_sets.clear(); for (; current_scale <= max_scale; current_scale++) { d_node ele; Stack cover_set_currentscale = getCoverSet(current_scale, cover_sets); for (int i = 0; i < cover_set_currentscale.length; i++) { // ; ele != end; // ele++) { ele = cover_set_currentscale.element(i); double upper_dist = new_upper_k.peek().distance + query_chi.max_dist + ele.n.max_dist; if (shell(ele.dist, query_chi.parent_dist, upper_dist)) { double d = Math.sqrt(m_DistanceFunction.distance(query_chi.p(), ele.n .p(), upper_dist * upper_dist)); if (m_TreeStats != null) m_TreeStats.incrPointCount(); if (d <= upper_dist) { if (d < new_upper_k.peek().distance) update(new_upper_k, d); d_node temp = new d_node(d, ele.n); new_cover_sets.element(current_scale).push(temp); if (m_TreeStats != null) m_TreeStats.incrIntNodeCount(); }// end if(d<=.. }// end if(shell(... }// end for(coverset_i) }// end for(scales) } /** * Prints the given cover sets and zero set. * * @param cover_sets The cover sets to print. * @param zero_set The zero set to print. * @param current_scale The scale/level to start printing * the cover sets from. * @param max_scale The max scale/level to print the cover * sets upto. */ void print_cover_sets(Stack> cover_sets, Stack zero_set, int current_scale, int max_scale) { d_node ele; println("cover set = "); for (; current_scale <= max_scale; current_scale++) { println("" + current_scale); for (int i = 0; i < cover_sets.element(current_scale).length; i++) { ele = cover_sets.element(current_scale).element(i); CoverTreeNode n = ele.n; println(n.p()); } } println("infinity"); for (int i = 0; i < zero_set.length; i++) { ele = zero_set.element(i); CoverTreeNode n = ele.n; println(n.p()); } } /** * Swap two nodes in a cover set. * * @param a The index first node. * @param b The index of second node. * @param cover_set The cover set in which the two nodes are. */ protected void SWAP(int a, int b, Stackcover_set) { d_node tmp = cover_set.element(a); cover_set.set(a, cover_set.element(b)); cover_set.set(b, tmp); } /** * Returns the difference of two given nodes distance to * the query. It is used in half-sorting a cover set. * * @param p1 The index of first node. * @param p2 The index of second node. * @param cover_set The cover set containing the two given * nodes. * @return dist_to_query_of_p1 - dist_to_query_of_p2 */ protected double compare(final int p1, final int p2, Stack cover_set) { return cover_set.element(p1).dist - cover_set.element(p2).dist; } /** * Half-sorts a cover set, so that nodes nearer to the query * are at the front. * @param cover_set The cover set to sort. */ protected void halfsort(Stack cover_set) { if(cover_set.length <= 1) return; int start=0; int hi = cover_set.length-1; int right = hi; int left; while (right > start) { int mid = start + ((hi - start) >> 1); boolean jumpover = false; if (compare(mid, start, cover_set) < 0.0) SWAP(mid, start, cover_set); if (compare(hi, mid, cover_set) < 0.0) SWAP(mid, hi, cover_set); else jumpover = true; if (!jumpover && compare(mid, start, cover_set) < 0.0) SWAP(mid, start, cover_set); jump_over: ; left = start + 1; right = hi - 1; do { while (compare(left, mid, cover_set) < 0.0) left++; while (compare(mid, right, cover_set) < 0.0) right--; if (left < right) { SWAP(left, right, cover_set); if (mid == left) mid = right; else if (mid == right) mid = left; left++; right--; } else if (left == right) { left++; right--; break; } } while (left <= right); hi = right; } } /** * Function to check if a child node can be inside a query ball, * without calculating the child node's distance to the query. * This further avoids unnecessary distance calculation. * * @param parent_query_dist The distance of parent to the query * @param child_parent_dist The distance of child to the parent. * @param upper_bound The distance to the query of the best kth * NN found so far. * @return true If child can be inside the query ball. */ protected boolean shell(double parent_query_dist, double child_parent_dist, double upper_bound) { return parent_query_dist - child_parent_dist <= upper_bound; } /** * This functions adds nodes for inspection at the next level during NN * search. The internal nodes are added to one of the cover sets (at * the level of the child node which is added) and leaf nodes are * added to the zero set. * * An optimization to consider: * Make all distance evaluations occur in descend. * * Instead of passing a cover_set, pass a stack of cover sets. The * last element holds d_nodes with your distance. The next lower * element holds a d_node with the distance to your query parent, * next = query grand parent, etc.. * * Compute distances in the presence of the tighter upper bound. * @param query The query (in shape of a cover tree node, as we * are doing batch searching). * @param upper_k Heap containing distances of best k-NNs found so * far. * @param current_scale The current scale/level being looked at in * the tree. * @param max_scale The max scale/level that has so far been looked * at. * @param cover_sets The cover sets of tree nodes for each level of * our trees for. * @param zero_set The set containing leaf nodes. * @return A new max_scale, if we descend to a deeper level. * @throws Exception If there is some problem (in updating the * heap upper_k). */ protected int descend(final CoverTreeNode query, MyHeap upper_k, int current_scale, int max_scale, // amk14comment: make sure this gets // passed by reference in Java Stack> cover_sets, // amk14comment: contains children in // set Q in paper Stack zero_set) // amk14comment: zeroset contains the children at // the lowest level i.e. -infinity throws Exception { d_node parent; Stack cover_set_currentscale = getCoverSet(current_scale, cover_sets); for (int i = 0; i < cover_set_currentscale.length; i++) { parent = cover_set_currentscale.element(i); CoverTreeNode par = parent.n; double upper_dist = upper_k.peek().distance + query.max_dist + query.max_dist; // *upper_bound + query->max_dist + query->max_dist; if (parent.dist <= upper_dist + par.max_dist) { CoverTreeNode chi; if (par == m_Root && par.num_children == 0) // if our tree consists of // only one root(which is // also leaf) node chi = par; else chi = par.children.element(0); if (parent.dist <= upper_dist + chi.max_dist) { // amk14comment: looking // at child_0 (which is // the parent itself) if (chi.num_children > 0) { if (max_scale < chi.scale) { max_scale = chi.scale; } d_node temp = new d_node(parent.dist, chi); getCoverSet(chi.scale, cover_sets).push(temp); if (m_TreeStats != null) m_TreeStats.incrIntNodeCount(); } else if (parent.dist <= upper_dist) { d_node temp = new d_node(parent.dist, chi); zero_set.push(temp); if (m_TreeStats != null) m_TreeStats.incrLeafCount(); } } for (int c = 1; c < par.num_children; c++) { chi = par.children.element(c); double upper_chi = upper_k.peek().distance + chi.max_dist + query.max_dist + query.max_dist; // *upper_bound + chi.max_dist // + query.max_dist + // query.max_dist; if (shell(parent.dist, chi.parent_dist, upper_chi)) { // amk14comment:parent_query_dist // - // child_parent_dist // <= upper_chi - if child can be // inside the shrunk query ball // NOT the same as above parent->dist <= upper_dist + chi->max_dist double d = Math.sqrt(m_DistanceFunction.distance(query.p(), chi.p(), upper_chi * upper_chi, m_TreeStats)); if (m_TreeStats != null) m_TreeStats.incrPointCount(); if (d <= upper_chi) { //if child is inside the shrunk query ball if (d < upper_k.peek().distance) // *upper_bound) update(upper_k, d); if (chi.num_children > 0) { if (max_scale < chi.scale) { max_scale = chi.scale; } d_node temp = new d_node(d, chi); getCoverSet(chi.scale, cover_sets).push(temp); if (m_TreeStats != null) m_TreeStats.incrIntNodeCount(); } else if (d <= upper_chi - chi.max_dist) { d_node temp = new d_node(d, chi); zero_set.push(temp); if (m_TreeStats != null) m_TreeStats.incrLeafCount(); } }//end if(d<=upper_chi) }//end if(shell(parent.dist,... }//end for(child_1 to n) }//end if(parent.dist<=upper_dist.. }//end for(covers_sets[current_scale][i]) return max_scale; } /** * Does a brute force NN search on the nodes in the given zero set. * A zero set might have some nodes added to it that were not k-NNs, * so need to do a brute-force to pick only the k-NNs (without * calculating distances, as each node in the zero set already had * its distance calculated to the query, which is stored with the * node). * * @param k The k in kNN. * @param query The query. * @param zero_set The zero set on which the brute force NN search * is performed. * @param upper_k The heap storing distances of k-NNs found during * the search. * @param results The returned k-NNs. * @throws Exception If there is somem problem. */ protected void brute_nearest(final int k, final CoverTreeNode query, Stack zero_set, MyHeap upper_k, Stack results) throws Exception { if (query.num_children > 0) { Stack new_zero_set = new Stack(); CoverTreeNode query_chi = query.children.element(0); brute_nearest(k, query_chi, zero_set, upper_k, results); MyHeap new_upper_k = new MyHeap(k); for (int i = 1; i < query.children.length; i++) { query_chi = query.children.element(i); setter(new_upper_k, upper_k.peek().distance + query_chi.parent_dist, k); copy_zero_set(query_chi, new_upper_k, zero_set, new_zero_set); brute_nearest(k, query_chi, new_zero_set, new_upper_k, results); } } else { NeighborList temp = new NeighborList(k); d_node ele; for (int i = 0; i < zero_set.length; i++) { ele = zero_set.element(i); if (ele.dist <= upper_k.peek().distance) { temp.insertSorted(ele.dist, ele.n.p()); // temp.push(ele.n.p()); } } results.push(temp); } } /** * Performs a recursive k-NN search for a given batch of queries provided in the * form of a cover tree. P.S.: This function should not be called from outside. * Outside classes should use kNearestNeighbours() instead. * * @param k The number of NNs to find. * @param query_node The node of the query tree to start the search from. * @param cover_sets The set of sets that contains internal * nodes that were found to be inside the query ball at previous scales/levels * (intially there would be just the root node at root level). * @param zero_set The set that'll contain the leaf nodes that are found to * be inside the query ball. * @param current_scale The level/scale to do the search from (this value * would be used to inspect the cover set in the provided set of cover sets). * @param max_scale The max scale/level that has so far been inspected. * @param upper_k The heap containing distances of the best k-NNs found so * far (initialized to Double.POSITIVE_INFINITY). * @param results The list of returned k-NNs. * @throws Exception If there is some problem during the search. */ protected void internal_batch_nearest_neighbor(final int k, final CoverTreeNode query_node, Stack> cover_sets, Stack zero_set, int current_scale, int max_scale, MyHeap upper_k, Stack results) throws Exception { if (current_scale > max_scale) { // All remaining points are in the zero set. brute_nearest(k, query_node, zero_set, upper_k, results); } else { // Our query_node has too much scale. Reduce. if (query_node.scale <= current_scale && query_node.scale != 100) { // amk14comment:if j>=i in paper CoverTreeNode query_chi; Stack new_zero_set = new Stack(); Stack> new_cover_sets = new Stack>(); MyHeap new_upper_k = new MyHeap(k); for (int i = 1; i < query_node.num_children; i++) { //processing child_1 and onwards query_chi = query_node.children.element(i); setter(new_upper_k, upper_k.peek().distance + query_chi.parent_dist, k); //copy the zero set that satisfy a certain bound to the new zero set copy_zero_set(query_chi, new_upper_k, zero_set, new_zero_set); //copy the coversets[current_scale] nodes that satisfy a certain //bound to the new_cover_sets[current_scale] copy_cover_sets(query_chi, new_upper_k, cover_sets, new_cover_sets, current_scale, max_scale); //search for the query_node child in the nodes nearer to it. internal_batch_nearest_neighbor(k, query_chi, new_cover_sets, new_zero_set, current_scale, max_scale, new_upper_k, results); } new_cover_sets = null; new_zero_set = null; new_upper_k = null; // now doing child_0 //which is the parent itself, that's why we don't // need new_zero_set or new_cover_sets internal_batch_nearest_neighbor(k, query_node.children.element(0), cover_sets, zero_set, current_scale, max_scale, upper_k, results); } else { // reduce cover set scale -- amk14comment: if j cover_set_i = getCoverSet(current_scale, cover_sets); // println("sorting"); halfsort(cover_set_i); max_scale = descend(query_node, upper_k, current_scale, max_scale, cover_sets, zero_set); cover_set_i.clear(); current_scale++; internal_batch_nearest_neighbor(k, query_node, cover_sets, zero_set, current_scale, max_scale, upper_k, results); } } } /** * Performs k-NN search for a batch of queries provided in the form * of a cover tree. P.S.: Outside classes should call * kNearestNeighbours(). * * @param k The number of k-NNs to find. * @param tree_root The root of the cover tree on which k-NN search * is to be performed. * @param query_root The root of the cover tree consisting of queries. * @param results The list of returned k-NNs. * @throws Exception If there is some problem during the search. */ protected void batch_nearest_neighbor(final int k, CoverTreeNode tree_root, CoverTreeNode query_root, Stack results) throws Exception { //amk14comment: These contain the covering nodes at each level Stack> cover_sets = new Stack>(100); //amk14comment: These contain the nodes thought to be nearest at the leaf level Stack zero_set = new Stack(); MyHeap upper_k = new MyHeap(k); //probably not needed //amk14comment:initializes the array to MAXFLOAT setter(upper_k, Double.POSITIVE_INFINITY, k); // amk14comment:distance from top query point to top node point double treeroot_to_query_dist = Math.sqrt(m_DistanceFunction.distance( query_root.p(), tree_root.p(), Double.POSITIVE_INFINITY)); // amk14comment:probably stores the kth smallest distances encountered so // far update(upper_k, treeroot_to_query_dist); d_node temp = new d_node(treeroot_to_query_dist, tree_root); getCoverSet(0, cover_sets).push(temp); // incrementing counts for the root node if (m_TreeStats != null) { m_TreeStats.incrPointCount(); if (tree_root.num_children > 0) m_TreeStats.incrIntNodeCount(); else m_TreeStats.incrLeafCount(); } internal_batch_nearest_neighbor(k, query_root, cover_sets, zero_set, 0, 0, upper_k, results); } /** * Performs k-NN serach for a single given query/test Instance. * * @param target The query/test instance. * @param k Number of k-NNs to find. * @return List of k-NNs. * @throws Exception If there is some problem during the search * for k-NNs. */ protected NeighborList findKNearest(final Instance target, final int k) throws Exception { Stack cover_set_current = new Stack(), cover_set_next, zero_set = new Stack(); CoverTreeNode parent, child; d_node par; MyHeap upper_k = new MyHeap(k); double d = Math.sqrt(m_DistanceFunction.distance(m_Root.p(), target, Double.POSITIVE_INFINITY, m_TreeStats)), upper_bound; cover_set_current.push(new d_node(d, m_Root)); setter(upper_k, Double.POSITIVE_INFINITY, k); this.update(upper_k, d); //updating stats for the root node if(m_TreeStats!=null) { if(m_Root.num_children > 0) m_TreeStats.incrIntNodeCount(); else m_TreeStats.incrLeafCount(); m_TreeStats.incrPointCount(); } //if root is the only node if(m_Root.num_children==0) { NeighborList list = new NeighborList(k); list.insertSorted(d, m_Root.p()); return list; } //else while(cover_set_current.length>0) { cover_set_next = new Stack(); for(int i=0; i0 && d < upper_bound) { update(upper_k, d); } if(child.num_children > 0) { cover_set_next.push(new d_node(d, child)); if(m_TreeStats!=null) m_TreeStats.incrIntNodeCount(); } else if (d <= upper_bound){ zero_set.push(new d_node(d, child)); if(m_TreeStats!=null) m_TreeStats.incrLeafCount(); } } } //end for current_set children } //end for current_set elements cover_set_current = cover_set_next; } //end while(curret_set not empty) NeighborList list = new NeighborList(k); d_node tmpnode; upper_bound = upper_k.peek().distance; for(int i=0; i result = new Stack(); batch_nearest_neighbor(k, this.m_Root, querytree.m_Root, result); if(m_Stats!=null) m_Stats.searchFinish(); insts = new Instances(m_Instances, 0); NeighborNode node = result.element(0).getFirst(); m_DistanceList = new double[result.element(0).currentLength()]; int i=0; while(node != null) { insts.add(node.m_Instance); m_DistanceList[i] = node.m_Distance; i++; node = node.m_Next; } return insts; } /** * Returns the NN instance of a given target instance, from among * the previously supplied training instances. * * @param target The instance for which NN is required. * @throws Exception If there is some problem finding the nearest * neighbour. * @return The NN instance of the target instance. */ public Instance nearestNeighbour(Instance target) throws Exception { return kNearestNeighbours(target, 1).instance(0); } /** * Returns the distances of the (k)-NN(s) found earlier * by kNearestNeighbours()/nearestNeighbour(). * * @throws Exception If the tree hasn't been built (by calling * setInstances()), or none of kNearestNeighbours() or * nearestNeighbour() has been called before. * @return The distances (in the same order) of the k-NNs. */ public double[] getDistances() throws Exception { if(m_Instances==null || m_DistanceList==null) throw new Exception("The tree has not been supplied with a set of " + "instances or getDistances() has been called " + "before calling kNearestNeighbours()."); return m_DistanceList; } /** * Checks if there is any instance with missing values. Throws an * exception if there is, as KDTree does not handle missing values. * * @param instances the instances to check * @throws Exception if missing values are encountered */ protected void checkMissing(Instances instances) throws Exception { for (int i = 0; i < instances.numInstances(); i++) { Instance ins = instances.instance(i); for (int j = 0; j < ins.numValues(); j++) { if (ins.index(j) != ins.classIndex()) if (ins.isMissingSparse(j)) { throw new Exception("ERROR: KDTree can not deal with missing " + "values. Please run ReplaceMissingValues filter " + "on the dataset before passing it on to the KDTree."); } } } } /** * Builds the Cover Tree on the given set of instances. * * @param instances The insts on which the Cover Tree is to be * built. * @throws Exception If some error occurs while * building the Cover Tree */ public void setInstances(Instances instances) throws Exception { super.setInstances(instances); buildCoverTree(instances); } /** * Adds an instance to the cover tree. * P.S.: The current version doesn't allow * addition of instances after batch construction. * * @param ins The instance to add. * @throws Exception Alway throws this, as current * implementation doesn't allow addition of instances * after building. */ public void update(Instance ins) throws Exception { throw new Exception("BottomUpConstruction method does not allow addition " + "of new Instances."); } /** * Adds the given instance info. This implementation updates only the * range datastructures of the EuclideanDistance. Nothing is * required to be updated in the built Cover Tree. * * @param ins The instance to add the information of. Usually this is * the test instance supplied to update the range of * attributes in the distance function. */ public void addInstanceInfo(Instance ins) { if(m_Instances!=null) { try { m_DistanceFunction.update(ins); } catch(Exception ex) { ex.printStackTrace(); } } else if(m_Instances==null) throw new IllegalStateException("No instances supplied yet. Cannot update without"+ "supplying a set of instances first."); } /** * Sets the distance function to use for nearest neighbour search. * Currently only EuclideanDistance is supported. * * @param df the distance function to use * @throws Exception if not EuclideanDistance */ public void setDistanceFunction(DistanceFunction df) throws Exception { if (!(df instanceof EuclideanDistance)) throw new Exception("CoverTree currently only works with " + "EuclideanDistanceFunction."); m_DistanceFunction = m_EuclideanDistance = (EuclideanDistance) df; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String baseTipText() { return "The base for the expansion constant."; } /** * Returns the base in use for expansion constant. * * @return base currently in use. */ public double getBase() { return m_Base; } /** * Sets the base to use for expansion constant. * The 2 in 2^i in the paper. * * @param b the new base; */ public void setBase(double b) { m_Base = b; } /** * Returns the size of the tree. * (number of internal nodes + number of leaves) * * @return the size of the tree */ public double measureTreeSize() { return m_NumNodes; } /** * Returns the number of leaves. * * @return the number of leaves */ public double measureNumLeaves() { return m_NumLeaves; } /** * Returns the depth of the tree. * * @return the number of rules */ public double measureMaxDepth() { return m_MaxDepth; } /** * Returns an enumeration of the additional measure names. * * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(); newVector.addElement("measureTreeSize"); newVector.addElement("measureNumLeaves"); newVector.addElement("measureMaxDepth"); if(m_Stats!=null) { for(Enumeration e = m_Stats.enumerateMeasures(); e.hasMoreElements();) { newVector.addElement(e.nextElement()); } } return newVector.elements(); } /** * Returns the value of the named measure. * * @param additionalMeasureName the name of the measure to query for * its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureMaxDepth") == 0) { return measureMaxDepth(); } else if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { return measureTreeSize(); } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) { return measureNumLeaves(); } else if(m_Stats!=null) { return m_Stats.getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (KDTree)"); } } /********Utility print functions.****** */ /** * Prints a string to stdout. * * @param s The string to print. */ protected static void print(String s) { System.out.print(s); } /** * Prints a string to stdout followed by * newline. * * @param s The string to print. */ protected static void println(String s) { System.out.println(s); } /** * Prints an object to stdout. * * @param o The object to print. */ protected static void print(Object o) { System.out.print(o); } /** * Prints an object to stdout followed by * newline. * * @param o The object to print. */ protected static void println(Object o) { System.out.println(o); } /** * Prints the specified number of spaces. * * @param s The number of space characters to print. */ protected static void print_space(int s) { for (int i = 0; i < s; i++) System.out.print(" "); } /** * Prints a cover tree starting from the given node. * * @param depth The depth of top_node. * @param top_node The node to start printing from. */ protected static void print(int depth, CoverTreeNode top_node) { print_space(depth); println(top_node.p()); if (top_node.num_children > 0) { print_space(depth); print("scale = " + top_node.scale + "\n"); print_space(depth); print("num children = " + top_node.num_children + "\n"); System.out.flush(); for (int i = 0; i < top_node.num_children; i++) print(depth + 1, top_node.children.element(i)); // top_node.children[i]); } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } /** * Method for testing the class from command line. * * @param args The supplied command line arguments. */ public static void main(String[] args) { if (args.length != 1) { System.err.println("Usage: CoverTree "); System.exit(-1); } try { Instances insts = null; if (args[0].endsWith(".csv")) { CSVLoader csv = new CSVLoader(); csv.setFile(new File(args[0])); insts = csv.getDataSet(); } else { insts = new Instances(new BufferedReader(new FileReader(args[0]))); } CoverTree tree = new CoverTree(); tree.setInstances(insts); print("Created data tree:\n"); print(0, tree.m_Root); println(""); } catch (Exception ex) { ex.printStackTrace(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy