weka.estimators.KKConditionalEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* KKConditionalEstimator.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.estimators;
import java.util.Random;
import weka.core.RevisionUtils;
import weka.core.Statistics;
import weka.core.Utils;
/**
* Conditional probability estimator for a numeric domain conditional upon
* a numeric domain.
*
* @author Len Trigg ([email protected])
* @version $Revision: 1.8 $
*/
public class KKConditionalEstimator implements ConditionalEstimator {
/** Vector containing all of the values seen */
private double [] m_Values;
/** Vector containing all of the conditioning values seen */
private double [] m_CondValues;
/** Vector containing the associated weights */
private double [] m_Weights;
/**
* Number of values stored in m_Weights, m_CondValues, and m_Values so far
*/
private int m_NumValues;
/** The sum of the weights so far */
private double m_SumOfWeights;
/** Current standard dev */
private double m_StandardDev;
/** Whether we can optimise the kernel summation */
private boolean m_AllWeightsOne;
/** The numeric precision */
private double m_Precision;
/**
* Execute a binary search to locate the nearest data value
*
* @param key the data value to locate
* @param secondaryKey the data value to locate
* @return the index of the nearest data value
*/
private int findNearestPair(double key, double secondaryKey) {
int low = 0;
int high = m_NumValues;
int middle = 0;
while (low < high) {
middle = (low + high) / 2;
double current = m_CondValues[middle];
if (current == key) {
double secondary = m_Values[middle];
if (secondary == secondaryKey) {
return middle;
}
if (secondary > secondaryKey) {
high = middle;
} else if (secondary < secondaryKey) {
low = middle+1;
}
}
if (current > key) {
high = middle;
} else if (current < key) {
low = middle+1;
}
}
return low;
}
/**
* Round a data value using the defined precision for this estimator
*
* @param data the value to round
* @return the rounded data value
*/
private double round(double data) {
return Math.rint(data / m_Precision) * m_Precision;
}
/**
* Constructor
*
* @param precision the precision to which numeric values are given. For
* example, if the precision is stated to be 0.1, the values in the
* interval (0.25,0.35] are all treated as 0.3.
*/
public KKConditionalEstimator(double precision) {
m_CondValues = new double [50];
m_Values = new double [50];
m_Weights = new double [50];
m_NumValues = 0;
m_SumOfWeights = 0;
m_StandardDev = 0;
m_AllWeightsOne = true;
m_Precision = precision;
}
/**
* Add a new data value to the current estimator.
*
* @param data the new data value
* @param given the new value that data is conditional upon
* @param weight the weight assigned to the data value
*/
public void addValue(double data, double given, double weight) {
data = round(data);
given = round(given);
int insertIndex = findNearestPair(given, data);
if ((m_NumValues <= insertIndex)
|| (m_CondValues[insertIndex] != given)
|| (m_Values[insertIndex] != data)) {
if (m_NumValues < m_Values.length) {
int left = m_NumValues - insertIndex;
System.arraycopy(m_Values, insertIndex,
m_Values, insertIndex + 1, left);
System.arraycopy(m_CondValues, insertIndex,
m_CondValues, insertIndex + 1, left);
System.arraycopy(m_Weights, insertIndex,
m_Weights, insertIndex + 1, left);
m_Values[insertIndex] = data;
m_CondValues[insertIndex] = given;
m_Weights[insertIndex] = weight;
m_NumValues++;
} else {
double [] newValues = new double [m_Values.length*2];
double [] newCondValues = new double [m_Values.length*2];
double [] newWeights = new double [m_Values.length*2];
int left = m_NumValues - insertIndex;
System.arraycopy(m_Values, 0, newValues, 0, insertIndex);
System.arraycopy(m_CondValues, 0, newCondValues, 0, insertIndex);
System.arraycopy(m_Weights, 0, newWeights, 0, insertIndex);
newValues[insertIndex] = data;
newCondValues[insertIndex] = given;
newWeights[insertIndex] = weight;
System.arraycopy(m_Values, insertIndex,
newValues, insertIndex+1, left);
System.arraycopy(m_CondValues, insertIndex,
newCondValues, insertIndex+1, left);
System.arraycopy(m_Weights, insertIndex,
newWeights, insertIndex+1, left);
m_NumValues++;
m_Values = newValues;
m_CondValues = newCondValues;
m_Weights = newWeights;
}
if (weight != 1) {
m_AllWeightsOne = false;
}
} else {
m_Weights[insertIndex] += weight;
m_AllWeightsOne = false;
}
m_SumOfWeights += weight;
double range = m_CondValues[m_NumValues-1] - m_CondValues[0];
m_StandardDev = Math.max(range / Math.sqrt(m_SumOfWeights),
// allow at most 3 sds within one interval
m_Precision / (2 * 3));
}
/**
* Get a probability estimator for a value
*
* @param given the new value that data is conditional upon
* @return the estimator for the supplied value given the condition
*/
public Estimator getEstimator(double given) {
Estimator result = new KernelEstimator(m_Precision);
if (m_NumValues == 0) {
return result;
}
double delta = 0, currentProb = 0;
double zLower, zUpper;
for(int i = 0; i < m_NumValues; i++) {
delta = m_CondValues[i] - given;
zLower = (delta - (m_Precision / 2)) / m_StandardDev;
zUpper = (delta + (m_Precision / 2)) / m_StandardDev;
currentProb = (Statistics.normalProbability(zUpper)
- Statistics.normalProbability(zLower));
result.addValue(m_Values[i], currentProb * m_Weights[i]);
}
return result;
}
/**
* Get a probability estimate for a value
*
* @param data the value to estimate the probability of
* @param given the new value that data is conditional upon
* @return the estimated probability of the supplied value
*/
public double getProbability(double data, double given) {
return getEstimator(given).getProbability(data);
}
/**
* Display a representation of this estimator
*/
public String toString() {
String result = "KK Conditional Estimator. "
+ m_NumValues + " Normal Kernels:\n"
+ "StandardDev = " + Utils.doubleToString(m_StandardDev,4,2)
+ " \nMeans =";
for(int i = 0; i < m_NumValues; i++) {
result += " (" + m_Values[i] + ", " + m_CondValues[i] + ")";
if (!m_AllWeightsOne) {
result += "w=" + m_Weights[i];
}
}
return result;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.8 $");
}
/**
* Main method for testing this class. Creates some random points
* in the range 0 - 100,
* and prints out a distribution conditional on some value
*
* @param argv should contain: seed conditional_value numpoints
*/
public static void main(String [] argv) {
try {
int seed = 42;
if (argv.length > 0) {
seed = Integer.parseInt(argv[0]);
}
KKConditionalEstimator newEst = new KKConditionalEstimator(0.1);
// Create 100 random points and add them
Random r = new Random(seed);
int numPoints = 50;
if (argv.length > 2) {
numPoints = Integer.parseInt(argv[2]);
}
for(int i = 0; i < numPoints; i++) {
int x = Math.abs(r.nextInt()%100);
int y = Math.abs(r.nextInt()%100);
System.out.println("# " + x + " " + y);
newEst.addValue(x, y, 1);
}
// System.out.println(newEst);
int cond;
if (argv.length > 1) {
cond = Integer.parseInt(argv[1]);
} else {
cond = Math.abs(r.nextInt()%100);
}
System.out.println("## Conditional = " + cond);
Estimator result = newEst.getEstimator(cond);
for(int i = 0; i <= 100; i+= 5) {
System.out.println(" " + i + " " + result.getProbability(i));
}
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy