All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.ClassifierSplitEvaluator Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    ClassifierSplitEvaluator.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.experiment;

import java.io.ByteArrayOutputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamClass;
import java.io.Serializable;
import java.lang.management.ManagementFactory;
import java.lang.management.ThreadMXBean;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.rules.ZeroR;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Summarizable;
import weka.core.Utils;

/**
 *  A SplitEvaluator that produces results for a
 * classification scheme on a nominal class attribute.
 * 

* * * Valid options are: *

* *

 * -W <class name>
 *  The full class name of the classifier.
 *  eg: weka.classifiers.bayes.NaiveBayes
 * 
* *
 * -C <index>
 *  The index of the class for which IR statistics
 *  are to be output. (default 1)
 * 
* *
 * -I <index>
 *  The index of an attribute to output in the
 *  results. This attribute should identify an
 *  instance in order to know which instances are
 *  in the test set of a cross validation. if 0
 *  no output (default 0).
 * 
* *
 * -P
 *  Add target and prediction columns to the result
 *  for each fold.
 * 
* *
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * 
* *
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* * * * All options after -- will be passed to the classifier. * * @author Len Trigg ([email protected]) * @version $Revision: 11198 $ */ public class ClassifierSplitEvaluator implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -8511241602760467265L; /** The template classifier */ protected Classifier m_Template = new ZeroR(); /** The classifier used for evaluation */ protected Classifier m_Classifier; /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** * Array of booleans corresponding to the measures in m_AdditionalMeasures * indicating which of the AdditionalMeasures the current classifier can * produce */ protected boolean[] m_doesProduce = null; /** * The number of additional measures that need to be filled in after taking * into account column constraints imposed by the final destination for * results */ protected int m_numberAdditionalMeasures = 0; /** Holds the statistics for the most recent application of the classifier */ protected String m_result = null; /** The classifier options (if any) */ protected String m_ClassifierOptions = ""; /** The classifier version */ protected String m_ClassifierVersion = ""; /** The length of a key */ private static final int KEY_SIZE = 3; /** The length of a result */ private static final int RESULT_SIZE = 28; /** The number of IR statistics */ private static final int NUM_IR_STATISTICS = 14; /** The number of averaged IR statistics */ private static final int NUM_WEIGHTED_IR_STATISTICS = 8; /** Class index for information retrieval statistics (default 0) */ private int m_IRclass = 0; /** Flag for prediction and target columns output. */ private boolean m_predTargetColumn = false; /** Attribute index of instance identifier (default -1) */ private int m_attID = -1; /** * No args constructor. */ public ClassifierSplitEvaluator() { updateOptions(); } /** * Returns a string describing this split evaluator * * @return a description of the split evaluator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return " A SplitEvaluator that produces results for a classification " + "scheme on a nominal class attribute."; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement(new Option( "\tThe full class name of the classifier.\n" + "\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W ")); newVector.addElement(new Option( "\tThe index of the class for which IR statistics\n" + "\tare to be output. (default 1)", "C", 1, "-C ")); newVector.addElement(new Option( "\tThe index of an attribute to output in the\n" + "\tresults. This attribute should identify an\n" + "\tinstance in order to know which instances are\n" + "\tin the test set of a cross validation. if 0\n" + "\tno output (default 0).", "I", 1, "-I ")); newVector.addElement(new Option( "\tAdd target and prediction columns to the result\n" + "\tfor each fold.", "P", 0, "-P")); if ((m_Template != null) && (m_Template instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to classifier " + m_Template.getClass().getName() + ":")); Enumeration enu = ((OptionHandler) m_Template).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. *

* * Valid options are: *

* *

   * -W <class name>
   *  The full class name of the classifier.
   *  eg: weka.classifiers.bayes.NaiveBayes
   * 
* *
   * -C <index>
   *  The index of the class for which IR statistics
   *  are to be output. (default 1)
   * 
* *
   * -I <index>
   *  The index of an attribute to output in the
   *  results. This attribute should identify an
   *  instance in order to know which instances are
   *  in the test set of a cross validation. if 0
   *  no output (default 0).
   * 
* *
   * -P
   *  Add target and prediction columns to the result
   *  for each fold.
   * 
* *
   * Options specific to classifier weka.classifiers.rules.ZeroR:
   * 
* *
   * -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
   * 
* * * * All options after -- will be passed to the classifier. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String cName = Utils.getOption('W', options); if (cName.length() > 0) { // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // Classifier. setClassifier(Classifier.forName(cName, null)); } if (getClassifier() instanceof OptionHandler) { ((OptionHandler) getClassifier()) .setOptions(Utils.partitionOptions(options)); updateOptions(); } String indexName = Utils.getOption('C', options); if (indexName.length() != 0) { m_IRclass = (new Integer(indexName)).intValue() - 1; } else { m_IRclass = 0; } String attID = Utils.getOption('I', options); if (attID.length() != 0) { m_attID = (new Integer(attID)).intValue() - 1; } else { m_attID = -1; } m_predTargetColumn = Utils.getFlag('P', options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { String[] classifierOptions = new String[0]; if ((m_Template != null) && (m_Template instanceof OptionHandler)) { classifierOptions = ((OptionHandler) m_Template).getOptions(); } String[] options = new String[classifierOptions.length + 8]; int current = 0; if (getClassifier() != null) { options[current++] = "-W"; options[current++] = getClassifier().getClass().getName(); } options[current++] = "-I"; options[current++] = "" + (m_attID + 1); if (getPredTargetColumn()) { options[current++] = "-P"; } options[current++] = "-C"; options[current++] = "" + (m_IRclass + 1); options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set a list of method names for additional measures to look for in * Classifiers. This could contain many measures (of which only a subset may * be produceable by the current Classifier) if an experiment is the type that * iterates over a set of properties. * * @param additionalMeasures a list of method names */ @Override public void setAdditionalMeasures(String[] additionalMeasures) { // System.err.println("ClassifierSplitEvaluator: setting additional measures"); m_AdditionalMeasures = additionalMeasures; // determine which (if any) of the additional measures this classifier // can produce if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) { m_doesProduce = new boolean[m_AdditionalMeasures.length]; if (m_Template instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer) m_Template). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String) en.nextElement(); for (int j = 0; j < m_AdditionalMeasures.length; j++) { if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) { m_doesProduce[j] = true; } } } } } else { m_doesProduce = null; } } /** * Returns an enumeration of any additional measure names that might be in the * classifier * * @return an enumeration of the measure names */ @Override public Enumeration enumerateMeasures() { Vector newVector = new Vector(); if (m_Template instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer) m_Template). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String) en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ @Override public double getMeasure(String additionalMeasureName) { if (m_Template instanceof AdditionalMeasureProducer) { if (m_Classifier == null) { throw new IllegalArgumentException("ClassifierSplitEvaluator: " + "Can't return result for measure, " + "classifier has not been built yet."); } return ((AdditionalMeasureProducer) m_Classifier). getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("ClassifierSplitEvaluator: " + "Can't return value for : " + additionalMeasureName + ". " + m_Template.getClass().getName() + " " + "is not an AdditionalMeasureProducer"); } } /** * Gets the data types of each of the key columns produced for a single run. * The number of key fields must be constant for a given SplitEvaluator. * * @return an array containing objects of the type of each key column. The * objects should be Strings, or Doubles. */ @Override public Object[] getKeyTypes() { Object[] keyTypes = new Object[KEY_SIZE]; keyTypes[0] = ""; keyTypes[1] = ""; keyTypes[2] = ""; return keyTypes; } /** * Gets the names of each of the key columns produced for a single run. The * number of key fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each key column */ @Override public String[] getKeyNames() { String[] keyNames = new String[KEY_SIZE]; keyNames[0] = "Scheme"; keyNames[1] = "Scheme_options"; keyNames[2] = "Scheme_version_ID"; return keyNames; } /** * Gets the key describing the current SplitEvaluator. For example This may * contain the name of the classifier used for classifier predictive * evaluation. The number of key fields must be constant for a given * SplitEvaluator. * * @return an array of objects containing the key. */ @Override public Object[] getKey() { Object[] key = new Object[KEY_SIZE]; key[0] = m_Template.getClass().getName(); key[1] = m_ClassifierOptions; key[2] = m_ClassifierVersion; return key; } /** * Gets the data types of each of the result columns produced for a single * run. The number of result fields must be constant for a given * SplitEvaluator. * * @return an array containing objects of the type of each result column. The * objects should be Strings, or Doubles. */ @Override public Object[] getResultTypes() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; overall_length += NUM_IR_STATISTICS; overall_length += NUM_WEIGHTED_IR_STATISTICS; if (getAttributeID() >= 0) { overall_length += 1; } if (getPredTargetColumn()) { overall_length += 2; } Object[] resultTypes = new Object[overall_length]; Double doub = new Double(0); int current = 0; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // IR stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Weighted IR stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Timing stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // sizes resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // ID/Targets/Predictions if (getAttributeID() >= 0) { resultTypes[current++] = ""; } if (getPredTargetColumn()) { resultTypes[current++] = ""; resultTypes[current++] = ""; } // Classifier defined extras resultTypes[current++] = ""; // add any additional measures for (int i = 0; i < addm; i++) { resultTypes[current++] = doub; } if (current != overall_length) { throw new Error("ResultTypes didn't fit RESULT_SIZE"); } return resultTypes; } /** * Gets the names of each of the result columns produced for a single run. The * number of result fields must be constant for a given SplitEvaluator. * * @return an array containing the name of each result column */ @Override public String[] getResultNames() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; overall_length += NUM_IR_STATISTICS; overall_length += NUM_WEIGHTED_IR_STATISTICS; if (getAttributeID() >= 0) { overall_length += 1; } if (getPredTargetColumn()) { overall_length += 2; } String[] resultNames = new String[overall_length]; int current = 0; resultNames[current++] = "Number_of_training_instances"; resultNames[current++] = "Number_of_testing_instances"; // Basic performance stats - right vs wrong resultNames[current++] = "Number_correct"; resultNames[current++] = "Number_incorrect"; resultNames[current++] = "Number_unclassified"; resultNames[current++] = "Percent_correct"; resultNames[current++] = "Percent_incorrect"; resultNames[current++] = "Percent_unclassified"; resultNames[current++] = "Kappa_statistic"; // Sensitive stats - certainty of predictions resultNames[current++] = "Mean_absolute_error"; resultNames[current++] = "Root_mean_squared_error"; resultNames[current++] = "Relative_absolute_error"; resultNames[current++] = "Root_relative_squared_error"; // SF stats resultNames[current++] = "SF_prior_entropy"; resultNames[current++] = "SF_scheme_entropy"; resultNames[current++] = "SF_entropy_gain"; resultNames[current++] = "SF_mean_prior_entropy"; resultNames[current++] = "SF_mean_scheme_entropy"; resultNames[current++] = "SF_mean_entropy_gain"; // K&B stats resultNames[current++] = "KB_information"; resultNames[current++] = "KB_mean_information"; resultNames[current++] = "KB_relative_information"; // IR stats resultNames[current++] = "True_positive_rate"; resultNames[current++] = "Num_true_positives"; resultNames[current++] = "False_positive_rate"; resultNames[current++] = "Num_false_positives"; resultNames[current++] = "True_negative_rate"; resultNames[current++] = "Num_true_negatives"; resultNames[current++] = "False_negative_rate"; resultNames[current++] = "Num_false_negatives"; resultNames[current++] = "IR_precision"; resultNames[current++] = "IR_recall"; resultNames[current++] = "F_measure"; resultNames[current++] = "Area_under_ROC"; // Weighted IR stats resultNames[current++] = "Weighted_avg_true_positive_rate"; resultNames[current++] = "Weighted_avg_false_positive_rate"; resultNames[current++] = "Weighted_avg_true_negative_rate"; resultNames[current++] = "Weighted_avg_false_negative_rate"; resultNames[current++] = "Weighted_avg_IR_precision"; resultNames[current++] = "Weighted_avg_IR_recall"; resultNames[current++] = "Weighted_avg_F_measure"; resultNames[current++] = "Weighted_avg_area_under_ROC"; // Timing stats resultNames[current++] = "Elapsed_Time_training"; resultNames[current++] = "Elapsed_Time_testing"; resultNames[current++] = "UserCPU_Time_training"; resultNames[current++] = "UserCPU_Time_testing"; // sizes resultNames[current++] = "Serialized_Model_Size"; resultNames[current++] = "Serialized_Train_Set_Size"; resultNames[current++] = "Serialized_Test_Set_Size"; // ID/Targets/Predictions if (getAttributeID() >= 0) { resultNames[current++] = "Instance_ID"; } if (getPredTargetColumn()) { resultNames[current++] = "Targets"; resultNames[current++] = "Predictions"; } // Classifier defined extras resultNames[current++] = "Summary"; // add any additional measures for (int i = 0; i < addm; i++) { resultNames[current++] = m_AdditionalMeasures[i]; } if (current != overall_length) { throw new Error("ResultNames didn't fit RESULT_SIZE"); } return resultNames; } /** * Gets the results for the supplied train and test datasets. Now performs a * deep copy of the classifier before it is built and evaluated (just in case * the classifier is not initialized properly in buildClassifier()). * * @param train the training Instances. * @param test the testing Instances. * @return the results stored in an array. The objects stored in the array may * be Strings, Doubles, or null (for the missing value). * @throws Exception if a problem occurs while getting the results */ @Override public Object[] getResult(Instances train, Instances test) throws Exception { if (train.classAttribute().type() != Attribute.NOMINAL) { throw new Exception("Class attribute is not nominal!"); } if (m_Template == null) { throw new Exception("No classifier has been specified"); } int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE + addm; overall_length += NUM_IR_STATISTICS; overall_length += NUM_WEIGHTED_IR_STATISTICS; if (getAttributeID() >= 0) { overall_length += 1; } if (getPredTargetColumn()) { overall_length += 2; } ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); if (canMeasureCPUTime && !thMonitor.isThreadCpuTimeEnabled()) { thMonitor.setThreadCpuTimeEnabled(true); } Object[] result = new Object[overall_length]; Evaluation eval = new Evaluation(train); m_Classifier = Classifier.makeCopy(m_Template); double[] predictions; long thID = Thread.currentThread().getId(); long CPUStartTime = -1, trainCPUTimeElapsed = -1, testCPUTimeElapsed = -1, trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; // training classifier trainTimeStart = System.currentTimeMillis(); if (canMeasureCPUTime) { CPUStartTime = thMonitor.getThreadUserTime(thID); } m_Classifier.buildClassifier(train); if (canMeasureCPUTime) { trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; } trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; // testing classifier testTimeStart = System.currentTimeMillis(); if (canMeasureCPUTime) { CPUStartTime = thMonitor.getThreadUserTime(thID); } predictions = eval.evaluateModel(m_Classifier, test); if (canMeasureCPUTime) { testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; } testTimeElapsed = System.currentTimeMillis() - testTimeStart; thMonitor = null; m_result = eval.toSummaryString(); // The results stored are all per instance -- can be multiplied by the // number of instances to get absolute numbers int current = 0; result[current++] = new Double(train.numInstances()); result[current++] = new Double(eval.numInstances()); result[current++] = new Double(eval.correct()); result[current++] = new Double(eval.incorrect()); result[current++] = new Double(eval.unclassified()); result[current++] = new Double(eval.pctCorrect()); result[current++] = new Double(eval.pctIncorrect()); result[current++] = new Double(eval.pctUnclassified()); result[current++] = new Double(eval.kappa()); result[current++] = new Double(eval.meanAbsoluteError()); result[current++] = new Double(eval.rootMeanSquaredError()); result[current++] = new Double(eval.relativeAbsoluteError()); result[current++] = new Double(eval.rootRelativeSquaredError()); result[current++] = new Double(eval.SFPriorEntropy()); result[current++] = new Double(eval.SFSchemeEntropy()); result[current++] = new Double(eval.SFEntropyGain()); result[current++] = new Double(eval.SFMeanPriorEntropy()); result[current++] = new Double(eval.SFMeanSchemeEntropy()); result[current++] = new Double(eval.SFMeanEntropyGain()); // K&B stats result[current++] = new Double(eval.KBInformation()); result[current++] = new Double(eval.KBMeanInformation()); result[current++] = new Double(eval.KBRelativeInformation()); // IR stats result[current++] = new Double(eval.truePositiveRate(m_IRclass)); result[current++] = new Double(eval.numTruePositives(m_IRclass)); result[current++] = new Double(eval.falsePositiveRate(m_IRclass)); result[current++] = new Double(eval.numFalsePositives(m_IRclass)); result[current++] = new Double(eval.trueNegativeRate(m_IRclass)); result[current++] = new Double(eval.numTrueNegatives(m_IRclass)); result[current++] = new Double(eval.falseNegativeRate(m_IRclass)); result[current++] = new Double(eval.numFalseNegatives(m_IRclass)); result[current++] = new Double(eval.precision(m_IRclass)); result[current++] = new Double(eval.recall(m_IRclass)); result[current++] = new Double(eval.fMeasure(m_IRclass)); result[current++] = new Double(eval.areaUnderROC(m_IRclass)); // Weighted IR stats result[current++] = new Double(eval.weightedTruePositiveRate()); result[current++] = new Double(eval.weightedFalsePositiveRate()); result[current++] = new Double(eval.weightedTrueNegativeRate()); result[current++] = new Double(eval.weightedFalseNegativeRate()); result[current++] = new Double(eval.weightedPrecision()); result[current++] = new Double(eval.weightedRecall()); result[current++] = new Double(eval.weightedFMeasure()); result[current++] = new Double(eval.weightedAreaUnderROC()); // Timing stats result[current++] = new Double(trainTimeElapsed / 1000.0); result[current++] = new Double(testTimeElapsed / 1000.0); if (canMeasureCPUTime) { result[current++] = new Double((trainCPUTimeElapsed / 1000000.0) / 1000.0); result[current++] = new Double((testCPUTimeElapsed / 1000000.0) / 1000.0); } else { result[current++] = new Double(Instance.missingValue()); result[current++] = new Double(Instance.missingValue()); } // sizes ByteArrayOutputStream bastream = new ByteArrayOutputStream(); ObjectOutputStream oostream = new ObjectOutputStream(bastream); oostream.writeObject(m_Classifier); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(train); result[current++] = new Double(bastream.size()); bastream = new ByteArrayOutputStream(); oostream = new ObjectOutputStream(bastream); oostream.writeObject(test); result[current++] = new Double(bastream.size()); // IDs if (getAttributeID() >= 0) { String idsString = ""; if (test.attribute(m_attID).isNumeric()) { if (test.numInstances() > 0) { idsString += test.instance(0).value(m_attID); } for (int i = 1; i < test.numInstances(); i++) { idsString += "|" + test.instance(i).value(m_attID); } } else { if (test.numInstances() > 0) { idsString += test.instance(0).stringValue(m_attID); } for (int i = 1; i < test.numInstances(); i++) { idsString += "|" + test.instance(i).stringValue(m_attID); } } result[current++] = idsString; } if (getPredTargetColumn()) { if (test.classAttribute().isNumeric()) { // Targets if (test.numInstances() > 0) { String targetsString = ""; targetsString += test.instance(0).value(test.classIndex()); for (int i = 1; i < test.numInstances(); i++) { targetsString += "|" + test.instance(i).value(test.classIndex()); } result[current++] = targetsString; } // Predictions if (predictions.length > 0) { String predictionsString = ""; predictionsString += predictions[0]; for (int i = 1; i < predictions.length; i++) { predictionsString += "|" + predictions[i]; } result[current++] = predictionsString; } } else { // Targets if (test.numInstances() > 0) { String targetsString = ""; targetsString += test.instance(0).stringValue(test.classIndex()); for (int i = 1; i < test.numInstances(); i++) { targetsString += "|" + test.instance(i).stringValue(test.classIndex()); } result[current++] = targetsString; } // Predictions if (predictions.length > 0) { String predictionsString = ""; predictionsString += test.classAttribute().value((int) predictions[0]); for (int i = 1; i < predictions.length; i++) { predictionsString += "|" + test.classAttribute().value((int) predictions[i]); } result[current++] = predictionsString; } } } if (m_Classifier instanceof Summarizable) { result[current++] = ((Summarizable) m_Classifier).toSummaryString(); } else { result[current++] = null; } for (int i = 0; i < addm; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_Classifier). getMeasure(m_AdditionalMeasures[i]); if (!Instance.isMissingValue(dv)) { Double value = new Double(dv); result[current++] = value; } else { result[current++] = null; } } catch (Exception ex) { System.err.println(ex); } } else { result[current++] = null; } } if (current != overall_length) { throw new Error("Results didn't fit RESULT_SIZE"); } return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String classifierTipText() { return "The classifier to use."; } /** * Get the value of Classifier. * * @return Value of Classifier. */ public Classifier getClassifier() { return m_Template; } /** * Sets the classifier. * * @param newClassifier the new classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Template = newClassifier; updateOptions(); } /** * Get the value of ClassForIRStatistics. * * @return Value of ClassForIRStatistics. */ public int getClassForIRStatistics() { return m_IRclass; } /** * Set the value of ClassForIRStatistics. * * @param v Value to assign to ClassForIRStatistics. */ public void setClassForIRStatistics(int v) { m_IRclass = v; } /** * Get the index of Attibute Identifying the instances * * @return index of outputed Attribute. */ public int getAttributeID() { return m_attID; } /** * Set the index of Attibute Identifying the instances * * @param v index the attribute to output */ public void setAttributeID(int v) { m_attID = v; } /** * @return true if the prediction and target columns must be outputed. */ public boolean getPredTargetColumn() { return m_predTargetColumn; } /** * Set the flag for prediction and target output. * * @param v true if the 2 columns have to be outputed. false otherwise. */ public void setPredTargetColumn(boolean v) { m_predTargetColumn = v; } /** * Updates the options that the current classifier is using. */ protected void updateOptions() { if (m_Template instanceof OptionHandler) { m_ClassifierOptions = Utils.joinOptions(((OptionHandler) m_Template) .getOptions()); } else { m_ClassifierOptions = ""; } if (m_Template instanceof Serializable) { ObjectStreamClass obs = ObjectStreamClass.lookup(m_Template .getClass()); m_ClassifierVersion = "" + obs.getSerialVersionUID(); } else { m_ClassifierVersion = ""; } } /** * Set the Classifier to use, given it's class name. A new classifier will be * instantiated. * * @param newClassifierName the Classifier class name. * @throws Exception if the class name is invalid. */ public void setClassifierName(String newClassifierName) throws Exception { try { setClassifier((Classifier) Class.forName(newClassifierName) .newInstance()); } catch (Exception ex) { throw new Exception("Can't find Classifier with class name: " + newClassifierName); } } /** * Gets the raw output from the classifier * * @return the raw output from th,0e classifier */ @Override public String getRawResultOutput() { StringBuffer result = new StringBuffer(); if (m_Classifier == null) { return " classifier"; } result.append(toString()); result.append("Classifier model: \n" + m_Classifier.toString() + '\n'); // append the performance statistics if (m_result != null) { result.append(m_result); if (m_doesProduce != null) { for (int i = 0; i < m_doesProduce.length; i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer) m_Classifier). getMeasure(m_AdditionalMeasures[i]); if (!Instance.isMissingValue(dv)) { Double value = new Double(dv); result.append(m_AdditionalMeasures[i] + " : " + value + '\n'); } else { result.append(m_AdditionalMeasures[i] + " : " + '?' + '\n'); } } catch (Exception ex) { System.err.println(ex); } } } } } return result.toString(); } /** * Returns a text description of the split evaluator. * * @return a text description of the split evaluator. */ @Override public String toString() { String result = "ClassifierSplitEvaluator: "; if (m_Template == null) { return result + " classifier"; } return result + m_Template.getClass().getName() + " " + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 11198 $"); } } // ClassifierSplitEvaluator




© 2015 - 2025 Weber Informatics LLC | Privacy Policy