All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.associations.PredictiveApriori Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    PredictiveApriori.java
 *    Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.associations;

import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Hashtable;
import java.util.TreeSet;
import java.util.Vector;

/**
 
 * Class implementing the predictive apriori algorithm to mine association rules.
* It searches with an increasing support threshold for the best 'n' rules concerning a support-based corrected confidence value.
*
* For more information see:
*
* Tobias Scheffer: Finding Association Rules That Trade Support Optimally against Confidence. In: 5th European Conference on Principles of Data Mining and Knowledge Discovery, 424-435, 2001.
*
* The implementation follows the paper expect for adding a rule to the output of the 'n' best rules. A rule is added if:
* the expected predictive accuracy of this rule is among the 'n' best and it is not subsumed by a rule with at least the same expected predictive accuracy (out of an unpublished manuscript from T. Scheffer). *

* * BibTeX: *

 * @inproceedings{Scheffer2001,
 *    author = {Tobias Scheffer},
 *    booktitle = {5th European Conference on Principles of Data Mining and Knowledge Discovery},
 *    pages = {424-435},
 *    publisher = {Springer},
 *    title = {Finding Association Rules That Trade Support Optimally against Confidence},
 *    year = {2001}
 * }
 * 
*

* * Valid options are:

* *

 -N <required number of rules output>
 *  The required number of rules. (default = 100)
* *
 -A
 *  If set class association rules are mined. (default = no)
* *
 -c <the class index>
 *  The class index. (default = last)
* * * @author Stefan Mutter ([email protected]) * @version $Revision: 6365 $ */ public class PredictiveApriori extends AbstractAssociator implements OptionHandler, CARuleMiner, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 8109088846865075341L; /** The minimum support. */ protected int m_premiseCount; /** The maximum number of rules that are output. */ protected int m_numRules; /** The number of rules created for the prior estimation. */ protected static final int m_numRandRules = 1000; /** The number of intervals used for the prior estimation. */ protected static final int m_numIntervals = 100; /** The set of all sets of itemsets. */ protected FastVector m_Ls; /** The same information stored in hash tables. */ protected FastVector m_hashtables; /** The list of all generated rules. */ protected FastVector[] m_allTheRules; /** The instances (transactions) to be used for generating the association rules. */ protected Instances m_instances; /** The hashtable containing the prior probabilities. */ protected Hashtable m_priors; /** The mid points of the intervals used for the prior estimation. */ protected double[] m_midPoints; /** The expected predictive accuracy a rule needs to be a candidate for the output. */ protected double m_expectation; /** The n best rules. */ protected TreeSet m_best; /** Flag keeping track if the list of the n best rules has changed. */ protected boolean m_bestChanged; /** Counter for the time of generation for an association rule. */ protected int m_count; /** The prior estimator. */ protected PriorEstimation m_priorEstimator; /** The class index. */ protected int m_classIndex; /** Flag indicating whether class association rules are mined. */ protected boolean m_car; /** * Returns a string describing this associator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class implementing the predictive apriori algorithm to mine " + "association rules.\n" + "It searches with an increasing support threshold for the best 'n' " + "rules concerning a support-based corrected confidence value.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString() + "\n\n" + "The implementation follows the paper expect for adding a rule to the " + "output of the 'n' best rules. A rule is added if:\n" + "the expected predictive accuracy of this rule is among the 'n' best " + "and it is not subsumed by a rule with at least the same expected " + "predictive accuracy (out of an unpublished manuscript from T. " + "Scheffer)."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Tobias Scheffer"); result.setValue(Field.TITLE, "Finding Association Rules That Trade Support Optimally against Confidence"); result.setValue(Field.BOOKTITLE, "5th European Conference on Principles of Data Mining and Knowledge Discovery"); result.setValue(Field.YEAR, "2001"); result.setValue(Field.PAGES, "424-435"); result.setValue(Field.PUBLISHER, "Springer"); return result; } /** * Constructor that allows to sets default values for the * minimum confidence and the maximum number of rules * the minimum confidence. */ public PredictiveApriori() { resetOptions(); } /** * Resets the options to the default values. */ public void resetOptions() { m_numRules = 105; m_premiseCount = 1; m_best = new TreeSet(); m_bestChanged = false; m_expectation = 0; m_count = 1; m_car = false; m_classIndex = -1; m_priors = new Hashtable(); } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NO_CLASS); result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Method that generates all large itemsets with a minimum support, and from * these all association rules. * * @param instances the instances to be used for generating the associations * @throws Exception if rules can't be built successfully */ public void buildAssociations(Instances instances) throws Exception { int temp = m_premiseCount, exactNumber = m_numRules-5; m_premiseCount = 1; m_best = new TreeSet(); m_bestChanged = false; m_expectation = 0; m_count = 1; m_instances = new Instances(instances); if (m_classIndex == -1) m_instances.setClassIndex(m_instances.numAttributes()-1); else if (m_classIndex < m_instances.numAttributes() && m_classIndex >= 0) m_instances.setClassIndex(m_classIndex); else throw new Exception("Invalid class index."); // can associator handle the data? getCapabilities().testWithFail(m_instances); //prior estimation m_priorEstimator = new PriorEstimation(m_instances,m_numRandRules,m_numIntervals,m_car); m_priors = m_priorEstimator.estimatePrior(); m_midPoints = m_priorEstimator.getMidPoints(); m_Ls = new FastVector(); m_hashtables = new FastVector(); for(int i =1; i < m_instances.numAttributes();i++){ m_bestChanged = false; if(!m_car){ // find large item sets findLargeItemSets(i); //find association rules (rule generation procedure) findRulesQuickly(); } else{ findLargeCarItemSets(i); findCaRulesQuickly(); } if(m_bestChanged){ temp =m_premiseCount; while(RuleGeneration.expectation(m_premiseCount, m_premiseCount,m_midPoints,m_priors) <= m_expectation){ m_premiseCount++; if(m_premiseCount > m_instances.numInstances()) break; } } if(m_premiseCount > m_instances.numInstances()){ // Reserve space for variables m_allTheRules = new FastVector[3]; m_allTheRules[0] = new FastVector(); m_allTheRules[1] = new FastVector(); m_allTheRules[2] = new FastVector(); int k = 0; while(m_best.size()>0 && exactNumber > 0){ m_allTheRules[0].insertElementAt((ItemSet)((RuleItem)m_best.last()).premise(),k); m_allTheRules[1].insertElementAt((ItemSet)((RuleItem)m_best.last()).consequence(),k); m_allTheRules[2].insertElementAt(new Double(((RuleItem)m_best.last()).accuracy()),k); m_best.remove(m_best.last()); k++; exactNumber--; } return; } if(temp != m_premiseCount && m_Ls.size() > 0){ FastVector kSets = (FastVector)m_Ls.lastElement(); m_Ls.removeElementAt(m_Ls.size()-1); kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); m_Ls.addElement(kSets); } } // Reserve space for variables m_allTheRules = new FastVector[3]; m_allTheRules[0] = new FastVector(); m_allTheRules[1] = new FastVector(); m_allTheRules[2] = new FastVector(); int k = 0; while(m_best.size()>0 && exactNumber > 0){ m_allTheRules[0].insertElementAt((ItemSet)((RuleItem)m_best.last()).premise(),k); m_allTheRules[1].insertElementAt((ItemSet)((RuleItem)m_best.last()).consequence(),k); m_allTheRules[2].insertElementAt(new Double(((RuleItem)m_best.last()).accuracy()),k); m_best.remove(m_best.last()); k++; exactNumber--; } } /** * Method that mines the n best class association rules. * @return an sorted array of FastVector (depending on the expected predictive accuracy) containing the rules and metric information * @param data the instances for which class association rules should be mined * @throws Exception if rules can't be built successfully */ public FastVector[] mineCARs(Instances data) throws Exception{ m_car = true; m_best = new TreeSet(); m_premiseCount = 1; m_bestChanged = false; m_expectation = 0; m_count = 1; buildAssociations(data); FastVector[] allCARRules = new FastVector[3]; allCARRules[0] = new FastVector(); allCARRules[1] = new FastVector(); allCARRules[2] = new FastVector(); for(int k =0; k < m_allTheRules[0].size();k++){ int[] newPremiseArray = new int[m_instances.numAttributes()-1]; int help = 0; for(int j = 0;j < m_instances.numAttributes();j++){ if(j != m_instances.classIndex()){ newPremiseArray[help] = ((ItemSet)m_allTheRules[0].elementAt(k)).itemAt(j); help++; } } ItemSet newPremise = new ItemSet(m_instances.numInstances(), newPremiseArray); newPremise.setCounter (((ItemSet)m_allTheRules[0].elementAt(k)).counter()); allCARRules[0].addElement(newPremise); int[] newConsArray = new int[1]; newConsArray[0] =((ItemSet)m_allTheRules[1].elementAt(k)).itemAt(m_instances.classIndex()); ItemSet newCons = new ItemSet(m_instances.numInstances(), newConsArray); newCons.setCounter(((ItemSet)m_allTheRules[1].elementAt(k)).counter()); allCARRules[1].addElement(newCons); allCARRules[2].addElement(m_allTheRules[2].elementAt(k)); } return allCARRules; } /** * Gets the instances without the class attribute * @return instances without class attribute */ public Instances getInstancesNoClass() { Instances noClass = null; try{ noClass = LabeledItemSet.divide(m_instances,false); } catch(Exception e){ e.printStackTrace(); System.out.println("\n"+e.getMessage()); } //System.out.println(noClass); return noClass; } /** * Gets the class attribute of all instances * @return Instances containing only the class attribute */ public Instances getInstancesOnlyClass() { Instances onlyClass = null; try{ onlyClass = LabeledItemSet.divide(m_instances,true); } catch(Exception e){ e.printStackTrace(); System.out.println("\n"+e.getMessage()); } return onlyClass; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { String string1 = "\tThe required number of rules. (default = " + (m_numRules-5) + ")", string2 = "\tIf set class association rules are mined. (default = no)", string3 = "\tThe class index. (default = last)"; FastVector newVector = new FastVector(3); newVector.addElement(new Option(string1, "N", 1, "-N ")); newVector.addElement(new Option(string2, "A", 0, "-A")); newVector.addElement(new Option(string3, "c", 1, "-c ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -N <required number of rules output>
   *  The required number of rules. (default = 100)
* *
 -A
   *  If set class association rules are mined. (default = no)
* *
 -c <the class index>
   *  The class index. (default = last)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { resetOptions(); String numRulesString = Utils.getOption('N', options); if (numRulesString.length() != 0) m_numRules = Integer.parseInt(numRulesString)+5; else m_numRules = Integer.MAX_VALUE; String classIndexString = Utils.getOption('c',options); if (classIndexString.length() != 0) m_classIndex = Integer.parseInt(classIndexString); m_car = Utils.getFlag('A', options); } /** * Gets the current settings of the PredictiveApriori object. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { Vector result; result = new Vector(); result.add("-N"); result.add("" + (m_numRules-5)); if (m_car) result.add("-A"); result.add("-c"); result.add("" + m_classIndex); return (String[]) result.toArray(new String[result.size()]); } /** * Outputs the association rules. * * @return a string representation of the model */ public String toString() { StringBuffer text = new StringBuffer(); if (m_allTheRules[0].size() == 0) return "\nNo large itemsets and rules found!\n"; text.append("\nPredictiveApriori\n===================\n\n"); text.append("\nBest rules found:\n\n"); for (int i = 0; i < m_allTheRules[0].size(); i++) { text.append(Utils.doubleToString((double)i+1, (int)(Math.log(m_numRules)/Math.log(10)+1),0)+ ". " + ((ItemSet)m_allTheRules[0].elementAt(i)). toString(m_instances) + " ==> " + ((ItemSet)m_allTheRules[1].elementAt(i)). toString(m_instances) +" acc:("+ Utils.doubleToString(((Double)m_allTheRules[2]. elementAt(i)).doubleValue(),5)+")"); text.append('\n'); } return text.toString(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numRulesTipText() { return "Number of rules to find."; } /** * Get the value of the number of required rules. * * @return Value of the number of required rules. */ public int getNumRules() { return m_numRules-5; } /** * Set the value of required rules. * * @param v Value to assign to number of required rules. */ public void setNumRules(int v) { m_numRules = v+5; } /** * Sets the class index * @param index the index of the class attribute */ public void setClassIndex(int index){ m_classIndex = index; } /** * Gets the index of the class attribute * @return the index of the class attribute */ public int getClassIndex(){ return m_classIndex; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String classIndexTipText() { return "Index of the class attribute.\n If set to -1, the last attribute will be taken as the class attribute."; } /** * Sets class association rule mining * @param flag if class association rules are mined, false otherwise */ public void setCar(boolean flag){ m_car = flag; } /** * Gets whether class association ruels are mined * @return true if class association rules are mined, false otherwise */ public boolean getCar(){ return m_car; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String carTipText() { return "If enabled class association rules are mined instead of (general) association rules."; } /** * Returns the metric string for the chosen metric type. * Predictive apriori uses the estimated predictive accuracy. * Therefore the metric string is "acc". * @return string "acc" */ public String metricString() { return "acc"; } /** * Method that finds all large itemsets for the given set of instances. * * @param index the instances to be used * @throws Exception if an attribute is numeric */ private void findLargeItemSets(int index) throws Exception { FastVector kMinusOneSets, kSets = new FastVector(); Hashtable hashtable; int i = 0; // Find large itemsets //of length 1 if(index == 1){ kSets = ItemSet.singletons(m_instances); ItemSet.upDateCounters(kSets, m_instances); kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); if (kSets.size() == 0) return; m_Ls.addElement(kSets); } //of length > 1 if(index >1){ if(m_Ls.size() > 0) kSets = (FastVector)m_Ls.lastElement(); m_Ls.removeAllElements(); i = index-2; kMinusOneSets = kSets; kSets = ItemSet.mergeAllItemSets(kMinusOneSets, i, m_instances.numInstances()); hashtable = ItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size()); m_hashtables.addElement(hashtable); kSets = ItemSet.pruneItemSets(kSets, hashtable); ItemSet.upDateCounters(kSets, m_instances); kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); if(kSets.size() == 0) return; m_Ls.addElement(kSets); } } /** * Method that finds all association rules. * * @throws Exception if an attribute is numeric */ private void findRulesQuickly() throws Exception { RuleGeneration currentItemSet; // Build rules for (int j = 0; j < m_Ls.size(); j++) { FastVector currentItemSets = (FastVector)m_Ls.elementAt(j); Enumeration enumItemSets = currentItemSets.elements(); while (enumItemSets.hasMoreElements()) { currentItemSet = new RuleGeneration((ItemSet)enumItemSets.nextElement()); m_best = currentItemSet.generateRules(m_numRules-5, m_midPoints,m_priors,m_expectation, m_instances,m_best,m_count); m_count = currentItemSet.m_count; if(!m_bestChanged && currentItemSet.m_change) m_bestChanged = true; //update minimum expected predictive accuracy to get into the n best if(m_best.size() >= m_numRules-5) m_expectation = ((RuleItem)m_best.first()).accuracy(); else m_expectation =0; } } } /** * Method that finds all large itemsets for class association rule mining for the given set of instances. * @param index the size of the large item sets * @throws Exception if an attribute is numeric */ private void findLargeCarItemSets(int index) throws Exception { FastVector kMinusOneSets, kSets = new FastVector(); Hashtable hashtable; int i = 0; // Find large itemsets if(index == 1){ kSets = CaRuleGeneration.singletons(m_instances); ItemSet.upDateCounters(kSets, m_instances); kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); if (kSets.size() == 0) return; m_Ls.addElement(kSets); } if(index >1){ if(m_Ls.size() > 0) kSets = (FastVector)m_Ls.lastElement(); m_Ls.removeAllElements(); i = index-2; kMinusOneSets = kSets; kSets = ItemSet.mergeAllItemSets(kMinusOneSets, i, m_instances.numInstances()); hashtable = ItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size()); m_hashtables.addElement(hashtable); kSets = ItemSet.pruneItemSets(kSets, hashtable); ItemSet.upDateCounters(kSets, m_instances); kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); if(kSets.size() == 0) return; m_Ls.addElement(kSets); } } /** * Method that finds all class association rules. * * @throws Exception if an attribute is numeric */ private void findCaRulesQuickly() throws Exception { CaRuleGeneration currentLItemSet; // Build rules for (int j = 0; j < m_Ls.size(); j++) { FastVector currentItemSets = (FastVector)m_Ls.elementAt(j); Enumeration enumItemSets = currentItemSets.elements(); while (enumItemSets.hasMoreElements()) { currentLItemSet = new CaRuleGeneration((ItemSet)enumItemSets.nextElement()); m_best = currentLItemSet.generateRules(m_numRules-5, m_midPoints,m_priors,m_expectation, m_instances,m_best,m_count); m_count = currentLItemSet.count(); if(!m_bestChanged && currentLItemSet.change()) m_bestChanged = true; if(m_best.size() == m_numRules-5) m_expectation = ((RuleItem)m_best.first()).accuracy(); else m_expectation = 0; } } } /** * returns all the rules * * @return all the rules * @see #m_allTheRules */ public FastVector[] getAllTheRules() { return m_allTheRules; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6365 $"); } /** * Main method. * * @param args the commandline parameters */ public static void main(String[] args) { runAssociator(new PredictiveApriori(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy