All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.associations.RuleGeneration Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    RuleGeneration.java
 *    Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.associations;

import weka.core.FastVector;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Statistics;
import weka.core.Utils;

import java.io.Serializable;
import java.util.Hashtable;
import java.util.TreeSet;

/**
 * Class implementing the rule generation procedure of the predictive apriori algorithm.
 *
 * Reference: T. Scheffer (2001). Finding Association Rules That Trade Support 
 * Optimally against Confidence. Proc of the 5th European Conf.
 * on Principles and Practice of Knowledge Discovery in Databases (PKDD'01),
 * pp. 424-435. Freiburg, Germany: Springer-Verlag. 

* * The implementation follows the paper expect for adding a rule to the output of the * n best rules. A rule is added if: * the expected predictive accuracy of this rule is among the n best and it is * not subsumed by a rule with at least the same expected predictive accuracy * (out of an unpublished manuscript from T. Scheffer). * * @author Stefan Mutter ([email protected]) * @version $Revision: 1.4 $ */ public class RuleGeneration implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -8927041669872491432L; /** The items stored as an array of of integer. */ protected int[] m_items; /** Counter for how many transactions contain this item set. */ protected int m_counter; /** The total number of transactions */ protected int m_totalTransactions; /** Flag indicating whether the list fo the best rules has changed. */ protected boolean m_change = false; /** The minimum expected predictive accuracy that is needed to be a candidate for the list of the best rules. */ protected double m_expectation; /** Threshold. If the support of the premise is higher the binomial distrubution is approximated by a normal one. */ protected static final int MAX_N = 300; /** The minimum support a rule needs to be a candidate for the list of the best rules. */ protected int m_minRuleCount; /** Sorted array of the mied points of the intervals used for prior estimation. */ protected double[] m_midPoints; /** Hashtable conatining the estimated prior probabilities. */ protected Hashtable m_priors; /** The list of the actual n best rules. */ protected TreeSet m_best; /** Integer indicating the generation time of a rule. */ protected int m_count; /** The instances. */ protected Instances m_instances; /** * Constructor * @param itemSet item set for that rules should be generated. * The item set will form the premise of the rules. */ public RuleGeneration(ItemSet itemSet){ m_totalTransactions = itemSet.m_totalTransactions; m_counter = itemSet.m_counter; m_items = itemSet.m_items; } /** * calculates the probability using a binomial distribution. * If the support of the premise is too large this distribution * is approximated by a normal distribution. * @param accuracy the accuracy value * @param ruleCount the support of the whole rule * @param premiseCount the support of the premise * @return the probability value */ public static final double binomialDistribution(double accuracy, double ruleCount, double premiseCount){ double mu, sigma; if(premiseCount < MAX_N) return Math.pow(2,(Utils.log2(Math.pow(accuracy,ruleCount))+Utils.log2(Math.pow((1.0-accuracy),(premiseCount-ruleCount)))+PriorEstimation.logbinomialCoefficient((int)premiseCount,(int)ruleCount))); else{ mu = premiseCount * accuracy; sigma = Math.sqrt((premiseCount * (1.0 - accuracy))*accuracy); return Statistics.normalProbability(((ruleCount+0.5)-mu)/(sigma*Math.sqrt(2))); } } /** * calculates the expected predctive accuracy of a rule * @param ruleCount the support of the rule * @param premiseCount the premise support of the rule * @param midPoints array with all mid points * @param priors hashtable containing the prior probabilities * @return the expected predictive accuracy */ public static final double expectation(double ruleCount, int premiseCount,double[] midPoints, Hashtable priors){ double numerator = 0, denominator = 0; for(int i = 0;i < midPoints.length; i++){ Double actualPrior = (Double)priors.get(new Double(midPoints[i])); if(actualPrior != null){ if(actualPrior.doubleValue() != 0){ double addend = actualPrior.doubleValue() * binomialDistribution(midPoints[i], ruleCount, (double)premiseCount); denominator += addend; numerator += addend*midPoints[i]; } } } if(denominator <= 0 || Double.isNaN(denominator)) System.out.println("RuleItem denominator: "+denominator); if(numerator <= 0 || Double.isNaN(numerator)) System.out.println("RuleItem numerator: "+numerator); return numerator/denominator; } /** * Generates all rules for an item set. The item set is the premise. * @param numRules the number of association rules the use wants to mine. * This number equals the size n of the list of the * best rules. * @param midPoints the mid points of the intervals * @param priors Hashtable that contains the prior probabilities * @param expectation the minimum value of the expected predictive accuracy * that is needed to get into the list of the best rules * @param instances the instances for which association rules are generated * @param best the list of the n best rules. * The list is implemented as a TreeSet * @param genTime the maximum time of generation * @return all the rules with minimum confidence for the given item set */ public TreeSet generateRules(int numRules, double[] midPoints, Hashtable priors, double expectation, Instances instances,TreeSet best,int genTime) { boolean redundant = false; FastVector consequences = new FastVector(), consequencesMinusOne = new FastVector(); ItemSet premise; int s = 0; RuleItem current = null, old; Hashtable hashtable; m_change = false; m_midPoints = midPoints; m_priors = priors; m_best = best; m_expectation = expectation; m_count = genTime; m_instances = instances; //create rule body premise =null; premise = new ItemSet(m_totalTransactions); premise.m_items = new int[m_items.length]; System.arraycopy(m_items, 0, premise.m_items, 0, m_items.length); premise.m_counter = m_counter; do{ m_minRuleCount = 1; while(expectation((double)m_minRuleCount,premise.m_counter,m_midPoints,m_priors) <= m_expectation){ m_minRuleCount++; if(m_minRuleCount > premise.m_counter) return m_best; } redundant = false; for(int i = 0; i < instances.numAttributes();i++){ if(i == 0){ for(int j = 0; j < m_items.length;j++) if(m_items[j] == -1) consequences = singleConsequence(instances, j,consequences); if(premise == null || consequences.size() == 0) return m_best; } FastVector allRuleItems = new FastVector(); int index = 0; do { int h = 0; while(h < consequences.size()){ RuleItem dummie = new RuleItem(); current = dummie.generateRuleItem(premise,(ItemSet)consequences.elementAt(h),instances,m_count,m_minRuleCount,m_midPoints,m_priors); if(current != null){ allRuleItems.addElement(current); h++; } else consequences.removeElementAt(h); } if(index == i) break; consequencesMinusOne = consequences; consequences = ItemSet.mergeAllItemSets(consequencesMinusOne, index, instances.numInstances()); hashtable = ItemSet.getHashtable(consequencesMinusOne, consequencesMinusOne.size()); consequences = ItemSet.pruneItemSets(consequences, hashtable); index++; } while (consequences.size() > 0); for(int h = 0;h < allRuleItems.size();h++){ current = (RuleItem)allRuleItems.elementAt(h); m_count++; if(m_best.size() < numRules){ m_change =true; redundant = removeRedundant(current); } else{ if(current.accuracy() > m_expectation){ m_expectation = ((RuleItem)(m_best.first())).accuracy(); boolean remove = m_best.remove(m_best.first()); m_change = true; redundant = removeRedundant(current); m_expectation = ((RuleItem)(m_best.first())).accuracy(); while(expectation((double)m_minRuleCount, (current.premise()).m_counter,m_midPoints,m_priors) < m_expectation){ m_minRuleCount++; if(m_minRuleCount > (current.premise()).m_counter) break; } } } } } }while(redundant); return m_best; } /** * Methods that decides whether or not rule a subsumes rule b. * The defintion of subsumption is: * Rule a subsumes rule b, if a subsumes b * AND * a has got least the same expected predictive accuracy as b. * @param a an association rule stored as a RuleItem * @param b an association rule stored as a RuleItem * @return true if rule a subsumes rule b or false otherwise. */ public static boolean aSubsumesB(RuleItem a, RuleItem b){ if(a.m_accuracy < b.m_accuracy) return false; for(int k = 0; k < a.premise().m_items.length;k++){ if(a.premise().m_items[k] != b.premise().m_items[k]){ if((a.premise().m_items[k] != -1 && b.premise().m_items[k] != -1) || b.premise().m_items[k] == -1) return false; } if(a.consequence().m_items[k] != b.consequence().m_items[k]){ if((a.consequence().m_items[k] != -1 && b.consequence().m_items[k] != -1) || a.consequence().m_items[k] == -1) return false; } } return true; } /** * generates a consequence of length 1 for an association rule. * @param instances the instances under consideration * @param attNum an item that does not occur in the premise * @param consequences FastVector that possibly already contains other consequences of length 1 * @return FastVector with consequences of length 1 */ public static FastVector singleConsequence(Instances instances, int attNum, FastVector consequences){ ItemSet consequence; for (int i = 0; i < instances.numAttributes(); i++) { if( i == attNum){ for (int j = 0; j < instances.attribute(i).numValues(); j++) { consequence = new ItemSet(instances.numInstances()); consequence.m_items = new int[instances.numAttributes()]; for (int k = 0; k < instances.numAttributes(); k++) consequence.m_items[k] = -1; consequence.m_items[i] = j; consequences.addElement(consequence); } } } return consequences; } /** * Method that removes redundant rules out of the list of the best rules. * A rule is in that list if: * the expected predictive accuracy of this rule is among the best and it is * not subsumed by a rule with at least the same expected predictive accuracy * @param toInsert the rule that should be inserted into the list * @return true if the method has changed the list, false otherwise */ public boolean removeRedundant(RuleItem toInsert){ boolean redundant = false, fSubsumesT = false, tSubsumesF = false; RuleItem first; int subsumes = 0; Object [] best = m_best.toArray(); for(int i=0; i < best.length; i++){ first = (RuleItem)best[i]; fSubsumesT = aSubsumesB(first,toInsert); tSubsumesF = aSubsumesB(toInsert, first); if(fSubsumesT){ subsumes = 1; break; } else{ if(tSubsumesF){ boolean remove = m_best.remove(first); subsumes = 2; redundant =true; } } } if(subsumes == 0 || subsumes == 2) m_best.add(toInsert); return redundant; } /** * Gets the actual maximum value of the generation time * @return the actual maximum value of the generation time */ public int count(){ return m_count; } /** * Gets if the list fo the best rules has been changed * @return whether or not the list fo the best rules has been changed */ public boolean change(){ return m_change; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy