All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.associations.Tertius Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Tertius.java
 *    Copyright (C) 2003 Peter A. Flach, Nicolas Lachiche
 *
 *    Thanks to Amelie Deltour for porting the original C code to Java
 *    and integrating it into Weka.
 */

package weka.associations;

import weka.associations.tertius.AttributeValueLiteral;
import weka.associations.tertius.IndividualInstances;
import weka.associations.tertius.IndividualLiteral;
import weka.associations.tertius.Literal;
import weka.associations.tertius.Predicate;
import weka.associations.tertius.Rule;
import weka.associations.tertius.SimpleLinkedList;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.awt.BorderLayout;
import java.awt.Button;
import java.awt.Font;
import java.awt.Frame;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.Reader;
import java.util.ArrayList;
import java.util.Date;
import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Finds rules according to confirmation measure (Tertius-type algorithm).
*
* For more information see:
*
* P. A. Flach, N. Lachiche (1999). Confirmation-Guided Discovery of first-order rules with Tertius. Machine Learning. 42:61-95. *

* * BibTeX: *

 * @article{Flach1999,
 *    author = {P. A. Flach and N. Lachiche},
 *    journal = {Machine Learning},
 *    pages = {61-95},
 *    title = {Confirmation-Guided Discovery of first-order rules with Tertius},
 *    volume = {42},
 *    year = {1999}
 * }
 * 
*

* * Valid options are:

* *

 -K <number of values in result>
 *  Set maximum number of confirmation  values in the result. (default: 10)
* *
 -F <frequency threshold>
 *  Set frequency threshold for pruning. (default: 0)
* *
 -C <confirmation threshold>
 *  Set confirmation threshold. (default: 0)
* *
 -N <noise threshold>
 *  Set noise threshold : maximum frequency of counter-examples.
 *  0 gives only satisfied rules. (default: 1)
* *
 -R
 *  Allow attributes to be repeated in a same rule.
* *
 -L <number of literals>
 *  Set maximum number of literals in a rule. (default: 4)
* *
 -G <0=no negation | 1=body | 2=head | 3=body and head>
 *  Set the negations in the rule. (default: 0)
* *
 -S
 *  Consider only classification rules.
* *
 -c <class index>
 *  Set index of class attribute. (default: last).
* *
 -H
 *  Consider only horn clauses.
* *
 -E
 *  Keep equivalent rules.
* *
 -M
 *  Keep same clauses.
* *
 -T
 *  Keep subsumed rules.
* *
 -I <0=always match | 1=never match | 2=significant>
 *  Set the way to handle missing values. (default: 0)
* *
 -O
 *  Use ROC analysis. 
* *
 -p <name of file>
 *  Set the file containing the parts of the individual for individual-based learning.
* *
 -P <0=no output | 1=on stdout | 2=in separate window>
 *  Set output of current values. (default: 0)
* * * @author Amelie Deltour * @version $Revision: 6368 $ */ public class Tertius extends AbstractAssociator implements OptionHandler, Runnable, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 5556726848380738179L; /** The results. */ private SimpleLinkedList m_results; /** Number of hypotheses considered. */ private int m_hypotheses; /** Number of hypotheses explored. */ private int m_explored; /** Time needed for the search. */ private Date m_time; /** Field to output the current values. */ private TextField m_valuesText; /** Instances used for the search. */ private Instances m_instances; /** Predicates used in the rules. */ private ArrayList m_predicates; /** Status of the search. */ private int m_status; /** Status of the search: normal */ private static final int NORMAL = 0; /** Status of the search: memory problem */ private static final int MEMORY = 1; /** Status of the search: user interruption */ private static final int STOP = 2; /* Pruning options. */ /** Number of best confirmation values to search. */ private int m_best; /** Frequency threshold for the body and the negation of the head. */ private double m_frequencyThreshold; /** Confirmation threshold for the rules. */ private double m_confirmationThreshold; /** Maximal number of counter-instances. */ private double m_noiseThreshold; /* Search space & language bias options. */ /** Repeat attributes ? */ private boolean m_repeat; /** Number of literals in a rule. */ private int m_numLiterals; /** Type of negation: none */ private static final int NONE = 0; /** Type of negation: body */ private static final int BODY = 1; /** Type of negation: head */ private static final int HEAD = 2; /** Type of negation: all */ private static final int ALL = 3; /** Types of negation. */ private static final Tag [] TAGS_NEGATION = { new Tag(NONE, "None"), new Tag(BODY, "Body"), new Tag(HEAD, "Head"), new Tag(ALL, "Both") }; /** Type of negation used in the rules. */ private int m_negation; /** Classification bias. */ private boolean m_classification; /** Index of class attribute. */ private int m_classIndex; /** Horn clauses bias. */ private boolean m_horn; /* Subsumption tests options. */ /** Perform test on equivalent rules ? */ private boolean m_equivalent; /** Perform test on same clauses ? */ private boolean m_sameClause; /** Perform subsumption test ? */ private boolean m_subsumption; /** Way of handling missing values: min counterinstances */ public static final int EXPLICIT = 0; /** Way of handling missing values: max counterinstances */ public static final int IMPLICIT = 1; /** Way of handling missing values: missing as a particular value */ public static final int SIGNIFICANT = 2; /** Ways of handling missing values. */ private static final Tag [] TAGS_MISSING = { new Tag(EXPLICIT, "Matches all"), new Tag(IMPLICIT, "Matches none"), new Tag(SIGNIFICANT, "Significant") }; /** Way of handling missing values in the search. */ private int m_missing; /** Perform ROC analysis ? */ private boolean m_roc; /** Name of the file containing the parts for individual-based learning. */ private String m_partsString; /** Part instances for individual-based learning. */ private Instances m_parts; /** Type of values output: No */ private static final int NO = 0; /** Type of values output: stdout */ private static final int OUT = 1; /** Type of values output: Window */ private static final int WINDOW = 2; /** Types of values output. */ private static final Tag [] TAGS_VALUES = { new Tag(NO, "No"), new Tag(OUT, "stdout"), new Tag(WINDOW, "Window") }; /** Type of values output. */ private int m_printValues; /** * Constructor that sets the options to the default values. */ public Tertius() { resetOptions(); } /** * Returns a string describing this associator. * * @return A description of the evaluator suitable for * displaying in the explorer/experimenter gui. */ public String globalInfo() { return "Finds rules according to confirmation measure (Tertius-type " + "algorithm).\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "P. A. Flach and N. Lachiche"); result.setValue(Field.YEAR, "1999"); result.setValue(Field.TITLE, "Confirmation-Guided Discovery of first-order rules with Tertius"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "42"); result.setValue(Field.PAGES, "61-95"); return result; } /** * Resets the options to the default values. */ public void resetOptions() { /* Pruning options. */ m_best = 10; m_frequencyThreshold = 0; m_confirmationThreshold = 0; m_noiseThreshold = 1; /* Search space & language bias options. */ m_repeat = false; m_numLiterals = 4; m_negation = NONE; m_classification = false; m_classIndex = 0; m_horn = false; /* Subsumption tests options. */ m_equivalent = true; m_sameClause = true; m_subsumption = true; /* Missing values. */ m_missing = EXPLICIT; /* ROC analysis. */ m_roc = false; /* Individual-based learning. */ m_partsString = ""; m_parts = null; /* Values output. */ m_printValues = NO; } /** * Returns an enumeration describing the available options. * * @return An enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(17); /* Pruning options. */ newVector.addElement(new Option("\tSet maximum number of confirmation " + "values in the result. (default: 10)", "K", 1, "-K ")); newVector.addElement(new Option("\tSet frequency threshold for pruning. " + "(default: 0)", "F", 1, "-F ")); newVector.addElement(new Option("\tSet confirmation threshold. " + "(default: 0)", "C", 1, "-C ")); newVector.addElement(new Option("\tSet noise threshold : maximum frequency " + "of counter-examples.\n\t0 gives only " + "satisfied rules. (default: 1)", "N", 1, "-N ")); /* Search space & language bias options. */ newVector.addElement(new Option("\tAllow attributes to be repeated in a " + "same rule.", "R", 0, "-R")); newVector.addElement(new Option("\tSet maximum number of literals in a " + "rule. (default: 4)", "L", 1, "-L ")); newVector.addElement(new Option("\tSet the negations in the rule. " + "(default: 0)", "G", 1, "-G <0=no negation | " + "1=body | " + "2=head | " + "3=body and head>")); newVector.addElement(new Option("\tConsider only classification rules.", "S", 0, "-S")); newVector.addElement(new Option("\tSet index of class attribute. " + "(default: last).", "c", 1, "-c ")); newVector.addElement(new Option("\tConsider only horn clauses.", "H", 0, "-H")); /* Subsumption tests options. */ newVector.addElement(new Option("\tKeep equivalent rules.", "E", 0, "-E")); newVector.addElement(new Option("\tKeep same clauses.", "M", 0, "-M")); newVector.addElement(new Option("\tKeep subsumed rules.", "T", 0, "-T")); /* Missing values options. */ newVector.addElement(new Option("\tSet the way to handle missing values. " + "(default: 0)", "I", 1, "-I <0=always match | " + "1=never match | " + "2=significant>")); /* ROC analysis. */ newVector.addElement(new Option("\tUse ROC analysis. ", "O", 0, "-O")); /* Individual-based learning. */ newVector.addElement(new Option("\tSet the file containing the parts of " + "the individual for individual-based " + "learning.", "p", 1, "-p ")); /* Values output. */ newVector.addElement(new Option("\tSet output of current values. " + "(default: 0)", "P", 1, "-P <0=no output | " + "1=on stdout | " + "2=in separate window>")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -K <number of values in result>
   *  Set maximum number of confirmation  values in the result. (default: 10)
* *
 -F <frequency threshold>
   *  Set frequency threshold for pruning. (default: 0)
* *
 -C <confirmation threshold>
   *  Set confirmation threshold. (default: 0)
* *
 -N <noise threshold>
   *  Set noise threshold : maximum frequency of counter-examples.
   *  0 gives only satisfied rules. (default: 1)
* *
 -R
   *  Allow attributes to be repeated in a same rule.
* *
 -L <number of literals>
   *  Set maximum number of literals in a rule. (default: 4)
* *
 -G <0=no negation | 1=body | 2=head | 3=body and head>
   *  Set the negations in the rule. (default: 0)
* *
 -S
   *  Consider only classification rules.
* *
 -c <class index>
   *  Set index of class attribute. (default: last).
* *
 -H
   *  Consider only horn clauses.
* *
 -E
   *  Keep equivalent rules.
* *
 -M
   *  Keep same clauses.
* *
 -T
   *  Keep subsumed rules.
* *
 -I <0=always match | 1=never match | 2=significant>
   *  Set the way to handle missing values. (default: 0)
* *
 -O
   *  Use ROC analysis. 
* *
 -p <name of file>
   *  Set the file containing the parts of the individual for individual-based learning.
* *
 -P <0=no output | 1=on stdout | 2=in separate window>
   *  Set output of current values. (default: 0)
* * * @param options The list of options as an array of strings. * @throws Exception if an option is not supported. */ public void setOptions(String [] options) throws Exception { resetOptions(); /* Pruning options. */ String bestString = Utils.getOption('K', options); if (bestString.length() != 0) { try { m_best = Integer.parseInt(bestString); } catch (Exception e) { throw new Exception("Invalid value for -K option: " + e.getMessage() + "."); } if (m_best < 1) { throw new Exception("Number of confirmation values has to be " + "greater than one!"); } } String frequencyThresholdString = Utils.getOption('F', options); if (frequencyThresholdString.length() != 0) { try { m_frequencyThreshold = (new Double(frequencyThresholdString)).doubleValue(); } catch (Exception e) { throw new Exception("Invalid value for -F option: " + e.getMessage() + "."); } if (m_frequencyThreshold < 0 || m_frequencyThreshold > 1) { throw new Exception("Frequency threshold has to be between " + "zero and one!"); } } String confirmationThresholdString = Utils.getOption('C', options); if (confirmationThresholdString.length() != 0) { try { m_confirmationThreshold = (new Double(confirmationThresholdString)).doubleValue(); } catch (Exception e) { throw new Exception("Invalid value for -C option: " + e.getMessage() + "."); } if (m_confirmationThreshold < 0 || m_confirmationThreshold > 1) { throw new Exception("Confirmation threshold has to be between " + "zero and one!"); } if (bestString.length() != 0) { throw new Exception("Specifying both a number of confirmation " + "values and a confirmation threshold " + "doesn't make sense!"); } if (m_confirmationThreshold != 0) { m_best = 0; } } String noiseThresholdString = Utils.getOption('N', options); if (noiseThresholdString.length() != 0) { try { m_noiseThreshold = (new Double(noiseThresholdString)).doubleValue(); } catch (Exception e) { throw new Exception("Invalid value for -N option: " + e.getMessage() + "."); } if (m_noiseThreshold < 0 || m_noiseThreshold > 1) { throw new Exception("Noise threshold has to be between " + "zero and one!"); } } /* Search space and language bias options. */ m_repeat = Utils.getFlag('R', options); String numLiteralsString = Utils.getOption('L', options); if (numLiteralsString.length() != 0) { try { m_numLiterals = Integer.parseInt(numLiteralsString); } catch (Exception e) { throw new Exception("Invalid value for -L option: " + e.getMessage() + "."); } if (m_numLiterals < 1) { throw new Exception("Number of literals has to be " + "greater than one!"); } } String negationString = Utils.getOption('G', options); if (negationString.length() != 0) { SelectedTag selected; int tag; try { tag = Integer.parseInt(negationString); } catch (Exception e) { throw new Exception("Invalid value for -G option: " + e.getMessage() + "."); } try { selected = new SelectedTag(tag, TAGS_NEGATION); } catch (Exception e) { throw new Exception("Value for -G option has to be " + "between zero and three!"); } setNegation(selected); } m_classification = Utils.getFlag('S', options); String classIndexString = Utils.getOption('c', options); if (classIndexString.length() != 0) { try { m_classIndex = Integer.parseInt(classIndexString); } catch (Exception e) { throw new Exception("Invalid value for -c option: " + e.getMessage() + "."); } } m_horn = Utils.getFlag('H', options); if (m_horn && (m_negation != NONE)) { throw new Exception("Considering horn clauses doesn't make sense " + "if negation allowed!"); } /* Subsumption tests options. */ m_equivalent = !(Utils.getFlag('E', options)); m_sameClause = !(Utils.getFlag('M', options)); m_subsumption = !(Utils.getFlag('T', options)); /* Missing values options. */ String missingString = Utils.getOption('I', options); if (missingString.length() != 0) { SelectedTag selected; int tag; try { tag = Integer.parseInt(missingString); } catch (Exception e) { throw new Exception("Invalid value for -I option: " + e.getMessage() + "."); } try { selected = new SelectedTag(tag, TAGS_MISSING); } catch (Exception e) { throw new Exception("Value for -I option has to be " + "between zero and two!"); } setMissingValues(selected); } /* ROC analysis. */ m_roc = Utils.getFlag('O', options); /* Individual-based learning. */ m_partsString = Utils.getOption('p', options); if (m_partsString.length() != 0) { Reader reader; try { reader = new BufferedReader(new FileReader(m_partsString)); } catch (Exception e) { throw new Exception("Can't open file " + e.getMessage() + "."); } m_parts = new Instances(reader); } /* Values output. */ String printValuesString = Utils.getOption('P', options); if (printValuesString.length() != 0) { SelectedTag selected; int tag; try { tag = Integer.parseInt(printValuesString); } catch (Exception e) { throw new Exception("Invalid value for -P option: " + e.getMessage() + "."); } try { selected = new SelectedTag(tag, TAGS_VALUES); } catch (Exception e) { throw new Exception("Value for -P option has to be " + "between zero and two!"); } setValuesOutput(selected); } } /** * Gets the current settings of the Tertius object. * * @return An array of strings suitable for passing to setOptions. */ public String [] getOptions() { Vector result; result = new Vector(); /* Pruning options. */ if (m_best > 0) { result.add("-K"); result.add("" + m_best); } result.add("-F"); result.add("" + m_frequencyThreshold); if (m_confirmationThreshold > 0) { result.add("-C"); result.add("" + m_confirmationThreshold); } result.add("-N"); result.add("" + m_noiseThreshold); /* Search space and language bias options. */ if (m_repeat) result.add("-R"); result.add("-L"); result.add("" + m_numLiterals); result.add("-G"); result.add("" + m_negation); if (m_classification) result.add("-S"); result.add("-c"); result.add("" + m_classIndex); if (m_horn) result.add("-H"); /* Subsumption tests options. */ if (!m_equivalent) result.add("-E"); if (!m_sameClause) result.add("-M"); if (!m_subsumption) result.add("-T"); /* Missing values options. */ result.add("-I"); result.add("" + m_missing); /* ROC analysis. */ if (m_roc) result.add("-O"); /* Individual-based learning. */ if (m_partsString.length() > 0) { result.add("-p"); result.add("" + m_partsString); } /* Values output. */ result.add("-P"); result.add("" + m_printValues); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String confirmationValuesTipText() { return "Number of best confirmation values to find."; } /** * Get the value of confirmationValues. * * @return Value of confirmationValues. */ public int getConfirmationValues() { return m_best; } /** * Set the value of confirmationValues. * * @param v Value to assign to confirmationValues. */ public void setConfirmationValues(int v) { m_best = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String frequencyThresholdTipText() { return "Minimum proportion of instances satisfying head and body of rules"; } /** * Get the value of frequencyThreshold. * * @return Value of frequencyThreshold. */ public double getFrequencyThreshold() { return m_frequencyThreshold; } /** * Set the value of frequencyThreshold. * * @param v Value to assign to frequencyThreshold. */ public void setFrequencyThreshold(double v) { m_frequencyThreshold = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String confirmationThresholdTipText() { return "Minimum confirmation of the rules."; } /** * Get the value of confirmationThreshold. * * @return Value of confirmationThreshold. */ public double getConfirmationThreshold() { return m_confirmationThreshold; } /** * Set the value of confirmationThreshold. * * @param v Value to assign to confirmationThreshold. */ public void setConfirmationThreshold(double v) { m_confirmationThreshold = v; if (v != 0) { m_best = 0; } } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String noiseThresholdTipText() { return "Maximum proportion of counter-instances of rules. " + "If set to 0, only satisfied rules will be given."; } /** * Get the value of noiseThreshold. * * @return Value of noiseThreshold. */ public double getNoiseThreshold() { return m_noiseThreshold; } /** * Set the value of noiseThreshold. * * @param v Value to assign to noiseThreshold. */ public void setNoiseThreshold(double v) { m_noiseThreshold = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String repeatLiteralsTipText() { return "Repeated attributes allowed."; } /** * Get the value of repeatLiterals. * * @return Value of repeatLiterals. */ public boolean getRepeatLiterals() { return m_repeat; } /** * Set the value of repeatLiterals. * * @param v Value to assign to repeatLiterals. */ public void setRepeatLiterals(boolean v) { m_repeat = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String numberLiteralsTipText() { return "Maximum number of literals in a rule."; } /** * Get the value of numberLiterals. * * @return Value of numberLiterals. */ public int getNumberLiterals() { return m_numLiterals; } /** * Set the value of numberLiterals. * * @param v Value to assign to numberLiterals. */ public void setNumberLiterals(int v) { m_numLiterals = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String negationTipText() { return "Set the type of negation allowed in the rule. " + "Negation can be allowed in the body, in the head, in both " + "or in none."; } /** * Get the value of negation. * * @return Value of negation. */ public SelectedTag getNegation() { return new SelectedTag(m_negation, TAGS_NEGATION); } /** * Set the value of negation. * * @param v Value to assign to negation. */ public void setNegation(SelectedTag v) { if (v.getTags() == TAGS_NEGATION) { m_negation = v.getSelectedTag().getID(); } } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String classificationTipText() { return "Find only rules with the class in the head."; } /** * Get the value of classification. * * @return Value of classification. */ public boolean getClassification() { return m_classification; } /** * Set the value of classification. * * @param v Value to assign to classification. */ public void setClassification(boolean v) { m_classification = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String classIndexTipText() { return "Index of the class attribute. If set to 0, the class will be the last attribute."; } /** * Get the value of classIndex. * * @return Value of classIndex. */ public int getClassIndex() { return m_classIndex; } /** * Set the value of classIndex. * * @param v Value to assign to classIndex. */ public void setClassIndex(int v) { m_classIndex = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String hornClausesTipText() { return "Find rules with a single conclusion literal only."; } /** * Get the value of hornClauses. * * @return Value of hornClauses. */ public boolean getHornClauses() { return m_horn; } /** * Set the value of hornClauses. * * @param v Value to assign to hornClauses. */ public void setHornClauses(boolean v) { m_horn = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String equivalentTipText() { return "Keep equivalent rules. " + "A rule r2 is equivalent to a rule r1 if the body of r2 is the " + "negation of the head of r1, and the head of r2 is the " + "negation of the body of r1."; } /** * Get the value of equivalent. * * @return Value of equivalent. */ public boolean disabled_getEquivalent() { return !m_equivalent; } /** * Set the value of equivalent. * * @param v Value to assign to equivalent. */ public void disabled_setEquivalent(boolean v) { m_equivalent = !v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String sameClauseTipText() { return "Keep rules corresponding to the same clauses. " + "If set to false, only the rule with the best confirmation " + "value and rules with a lower number of counter-instances " + "will be kept."; } /** * Get the value of sameClause. * * @return Value of sameClause. */ public boolean disabled_getSameClause() { return !m_sameClause; } /** * Set the value of sameClause. * * @param v Value to assign to sameClause. */ public void disabled_setSameClause(boolean v) { m_sameClause = !v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String subsumptionTipText() { return "Keep subsumed rules. " + "If set to false, subsumed rules will only be kept if they " + "have a better confirmation or a lower number of counter-instances."; } /** * Get the value of subsumption. * * @return Value of subsumption. */ public boolean disabled_getSubsumption() { return !m_subsumption; } /** * Set the value of subsumption. * * @param v Value to assign to subsumption. */ public void disabled_setSubsumption(boolean v) { m_subsumption = !v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String missingValuesTipText() { return "Set the way to handle missing values. " + "Missing values can be set to match any value, or never match values " + "or to be significant and possibly appear in rules."; } /** * Get the value of missingValues. * * @return Value of missingValues. */ public SelectedTag getMissingValues() { return new SelectedTag(m_missing, TAGS_MISSING); } /** * Set the value of missingValues. * * @param v Value to assign to missingValues. */ public void setMissingValues(SelectedTag v) { if (v.getTags() == TAGS_MISSING) { m_missing = v.getSelectedTag().getID(); } } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String rocAnalysisTipText() { return "Return TP-rate and FP-rate for each rule found."; } /** * Get the value of rocAnalysis. * * @return Value of rocAnalysis. */ public boolean getRocAnalysis() { return m_roc; } /** * Set the value of rocAnalysis. * * @param v Value to assign to rocAnalysis. */ public void setRocAnalysis(boolean v) { m_roc = v; } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String partFileTipText() { return "Set file containing the parts of the individual " + "for individual-based learning."; } /** * Get the value of partFile. * * @return Value of partFile. */ public File disabled_getPartFile() { return new File(m_partsString); } /** * Set the value of partFile. * * @param v Value to assign to partFile. * @throws Exception if file cannot be opened */ public void disabled_setPartFile(File v) throws Exception { m_partsString = v.getAbsolutePath(); if (m_partsString.length() != 0) { Reader reader; try { reader = new BufferedReader(new FileReader(m_partsString)); } catch (Exception e) { throw new Exception("Can't open file " + e.getMessage() + "."); } m_parts = new Instances(reader); } } /** * Returns the tip text for this property. * * @return Tip text for this property suitable for * displaying in the explorer/experimenter GUI. */ public String valuesOutputTipText() { return "Give visual feedback during the search. " + "The current best and worst values can be output either to stdout or to a separate window."; } /** * Get the value of valuesOutput. * * @return Value of valuesOutput. */ public SelectedTag getValuesOutput() { return new SelectedTag(m_printValues, TAGS_VALUES); } /** * Set the value of valuesOutput. * * @param v Value to assign to valuesOutput. */ public void setValuesOutput(SelectedTag v) { if (v.getTags() == TAGS_VALUES) { m_printValues = v.getSelectedTag().getID(); } } /** * Build the predicate corresponding to an attribute. * * @param instances The instances this predicates comes from. * @param attr The attribute this predicate corresponds to. * @param isClass Saying if the attribute is the class attribute. * @return The corresponding Predicate. * @throws Exception if the predicate could not be build * (the attribute is numeric). */ private Predicate buildPredicate(Instances instances, Attribute attr, boolean isClass) throws Exception { Predicate predicate; /* The result. */ Literal lit; Literal negation; boolean missingValues; /* Missing values for this attribute ? */ boolean individual = (m_parts != null); /* Individual-based learning ? */ int type = (instances == m_parts) ? IndividualLiteral.PART_PROPERTY : IndividualLiteral.INDIVIDUAL_PROPERTY; /* Type of property. */ if (attr.isNumeric()) { throw new Exception("Can't handle numeric attributes!"); } missingValues = instances.attributeStats(attr.index()).missingCount > 0; /* Build predicate. */ if (individual) { predicate = new Predicate(instances.relationName() + "." + attr.name(), attr.index(), isClass); } else { predicate = new Predicate(attr.name(), attr.index(), isClass); } if (attr.numValues() == 2 && (!missingValues || m_missing == EXPLICIT)) { /* Case of two values. * If there are missing values, this case is treated like other cases. */ if (individual) { lit = new IndividualLiteral(predicate, attr.value(0), 0, Literal.POS, m_missing, type); negation = new IndividualLiteral(predicate, attr.value(1), 1, Literal.POS, m_missing, type); } else { lit = new AttributeValueLiteral(predicate, attr.value(0), 0, Literal.POS, m_missing); negation = new AttributeValueLiteral(predicate, attr.value(1), 1, Literal.POS, m_missing); } lit.setNegation(negation); negation.setNegation(lit); predicate.addLiteral(lit); } else { /* Case of several values. */ for (int i = 0; i < attr.numValues(); i++) { if (individual) { lit = new IndividualLiteral(predicate, attr.value(i), i, Literal.POS, m_missing, type); } else { lit = new AttributeValueLiteral(predicate, attr.value(i), i, Literal.POS, m_missing); } if (m_negation != NONE) { if (individual) { negation = new IndividualLiteral(predicate, attr.value(i), i, Literal.NEG, m_missing, type); } else { negation = new AttributeValueLiteral(predicate, attr.value(i), i, Literal.NEG, m_missing); } lit.setNegation(negation); negation.setNegation(lit); } predicate.addLiteral(lit); } /* One more value if missing is significant. */ if (missingValues && m_missing == SIGNIFICANT) { if (individual) { lit = new IndividualLiteral(predicate, "?", -1, Literal.POS, m_missing, type); } else { lit = new AttributeValueLiteral(predicate, "?", -1, Literal.POS, m_missing); } if (m_negation != NONE) { if (individual) { negation = new IndividualLiteral(predicate, "?", -1, Literal.NEG, m_missing, type); } else { negation = new AttributeValueLiteral(predicate, "?", -1, Literal.NEG, m_missing); } lit.setNegation(negation); negation.setNegation(lit); } predicate.addLiteral(lit); } } return predicate; } /** * Build the predicates to use in the rules. * * @return the predicates * @throws Exception If the predicates could not be built * (numeric attribute). */ private ArrayList buildPredicates() throws Exception { ArrayList predicates = new ArrayList(); /* The result. */ Predicate predicate; Attribute attr; Enumeration attributes = m_instances.enumerateAttributes(); boolean individual = (m_parts != null); /* Individual-based learning ? */ /* Attributes. */ while (attributes.hasMoreElements()) { attr = (Attribute) attributes.nextElement(); /* Identifiers do not appear in rules in individual-based learning. */ if (!(individual && attr.name().equals("id"))) { predicate = buildPredicate(m_instances, attr, false); predicates.add(predicate); } } /* Class attribute. */ attr = m_instances.classAttribute(); /* Identifiers do not appear in rules. */ if (!(individual && attr.name().equals("id"))) { predicate = buildPredicate(m_instances, attr, true); predicates.add(predicate); } /* Attributes of the parts in individual-based learning. */ if (individual) { attributes = m_parts.enumerateAttributes(); while (attributes.hasMoreElements()) { attr = (Attribute) attributes.nextElement(); /* Identifiers do not appear in rules. */ if (!attr.name().equals("id")) { predicate = buildPredicate(m_parts, attr, false); predicates.add(predicate); } } } return predicates; } /** * Count the number of distinct confirmation values in the results. * * @return Number of confirmation values in the results. */ private int numValuesInResult() { int result = 0; SimpleLinkedList.LinkedListIterator iter = m_results.iterator(); Rule current; Rule next; if (!iter.hasNext()) { return result; } else { current = (Rule) iter.next(); while (iter.hasNext()) { next = (Rule) iter.next(); if (current.getConfirmation() > next.getConfirmation()) { result++; } current = next; } return result + 1; } } /** * Test if it is worth refining a rule. * * @param rule The rule to consider. * @return True if the rule can be refined, false otherwise. */ private boolean canRefine(Rule rule) { if (rule.isEmpty()) { return true; } if (m_best != 0) { if (numValuesInResult() < m_best) { return true; } Rule worstResult = (Rule) m_results.getLast(); if (rule.getOptimistic() >= worstResult.getConfirmation()) { return true; } return false; } else { return true; } } /** * Test if it is worth calculating the optimistic estimate of a rule. * * @param rule The rule to consider. * @return True if the optimistic estimate can be calculated, false otherwise. */ private boolean canCalculateOptimistic(Rule rule) { if (rule.hasTrueBody() || rule.hasFalseHead()) { return false; } if (!rule.overFrequencyThreshold(m_frequencyThreshold)) { return false; } return true; } /** * Test if a rule can be explored (if it is interesting for the results * or for refining). * * @param rule The rule to consider. * @return True if the rule can be explored, false otherwise. */ private boolean canExplore(Rule rule) { if (rule.getOptimistic() < m_confirmationThreshold) { return false; } if (m_best != 0) { if (numValuesInResult() < m_best) { return true; } Rule worstResult = (Rule) m_results.getLast(); if (rule.getOptimistic() >= worstResult.getConfirmation()) { return true; } return false; } else { return true; } } /** * Test if a rule can be stored in the agenda. * * @param rule The rule to consider. * @return True if the rule can be stored, false otherwise. */ private boolean canStoreInNodes(Rule rule) { if (rule.getObservedNumber() == 0) { return false; } return true; } /** * Test if it is worth calculating the confirmation of a rule. * * @param rule The rule to consider. * @return True if the confirmation can be calculated, false otherwise. */ private boolean canCalculateConfirmation(Rule rule) { if (rule.getObservedFrequency() > m_noiseThreshold) { return false; } return true; } /** * Test if a rule can be added to the results. * * @param rule The rule to consider. * @return True if the rule can be stored, false otherwise. */ private boolean canStoreInResults(Rule rule) { if (rule.getConfirmation() < m_confirmationThreshold) { return false; } if (m_best != 0) { if (numValuesInResult() < m_best) { return true; } Rule worstResult = (Rule) m_results.getLast(); if (rule.getConfirmation() >= worstResult.getConfirmation()) { return true; } return false; } else { return true; } } /** * Add a rule in the appropriate place in the list of the results, * according to the confirmation and * number of counter-instances of the rule.

* Subsumption tests are performed and the rule may not be added.

* Previous results may also be removed because of sumption. */ private void addResult(Rule rule) { Rule current; boolean added = false; /* Iterate the list until we find the right place. */ SimpleLinkedList.LinkedListIterator iter = m_results.iterator(); while (iter.hasNext()) { current = (Rule) iter.next(); if (Rule.confirmationThenObservedComparator.compare(current, rule) > 0) { iter.addBefore(rule); added = true; break; } /* Subsumption tests to see if the rule can be added. */ if ((m_subsumption || m_sameClause || m_equivalent) && current.subsumes(rule)) { if (current.numLiterals() == rule.numLiterals()) { if (current.equivalentTo(rule)) { /* Equivalent rules. */ if (m_equivalent) { return; } } else { /* Same clauses. */ if (m_sameClause && Rule.confirmationComparator.compare(current, rule) < 0) { return; } } } else { /* Subsumption. */ if (m_subsumption && Rule.observedComparator.compare(current, rule) <= 0) { return; } } } } if (added == false) { /* The rule must be added in the end of the results. */ m_results.add(rule); } /* Iterate the results with a lower confirmation * to see if some of them must be removed. */ SimpleLinkedList.LinkedListInverseIterator inverse = m_results.inverseIterator(); while (inverse.hasPrevious()) { current = (Rule) inverse.previous(); if (Rule.confirmationThenObservedComparator.compare(current, rule) < 0) { break; } if (current != rule && rule.subsumes(current)) { if (current.numLiterals() == rule.numLiterals()) { if (!current.equivalentTo(rule)) { /* Same clauses. */ if (m_sameClause && Rule.confirmationComparator.compare(current, rule) > 0) { inverse.remove(); } } } else { /* Subsumption. */ if (m_subsumption && Rule.observedComparator.compare(rule, current) <= 0) { inverse.remove(); } } } } /* Remove the rules with the worst confirmation value * if there are too many results. */ if (m_best != 0 && numValuesInResult() > m_best) { Rule worstRule = (Rule) m_results.getLast(); inverse = m_results.inverseIterator(); while (inverse.hasPrevious()) { current = (Rule) inverse.previous(); if (Rule.confirmationComparator.compare(current, worstRule) < 0) { break; } inverse.remove(); } } /* Print the new current values. */ printValues(); } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NO_CLASS); result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Method that launches the search to find the rules with the highest * confirmation. * * @param instances The instances to be used for generating the rules. * @throws Exception if rules can't be built successfully. */ public void buildAssociations(Instances instances) throws Exception { Frame valuesFrame = null; /* Frame to display the current values. */ /* Initialization of the search. */ if (m_parts == null) { m_instances = new Instances(instances); } else { m_instances = new IndividualInstances(new Instances(instances), m_parts); } m_results = new SimpleLinkedList(); m_hypotheses = 0; m_explored = 0; m_status = NORMAL; if (m_classIndex == -1) m_instances.setClassIndex(m_instances.numAttributes()-1); else if (m_classIndex < m_instances.numAttributes() && m_classIndex >= 0) m_instances.setClassIndex(m_classIndex); else throw new Exception("Invalid class index."); // can associator handle the data? getCapabilities().testWithFail(m_instances); /* Initialization of the window for current values. */ if (m_printValues == WINDOW) { m_valuesText = new TextField(37); m_valuesText.setEditable(false); m_valuesText.setFont(new Font("Monospaced", Font.PLAIN, 12)); Label valuesLabel = new Label("Best and worst current values:"); Button stop = new Button("Stop search"); stop.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { /* Signal the interruption to the search. */ m_status = STOP; } }); valuesFrame = new Frame("Tertius status"); valuesFrame.setResizable(false); valuesFrame.add(m_valuesText, BorderLayout.CENTER); valuesFrame.add(stop, BorderLayout.SOUTH); valuesFrame.add(valuesLabel, BorderLayout.NORTH); valuesFrame.pack(); valuesFrame.setVisible(true); } else if (m_printValues == OUT) { System.out.println("Best and worst current values:"); } Date start = new Date(); /* Build the predicates and launch the search. */ m_predicates = buildPredicates(); beginSearch(); Date end = new Date(); if (m_printValues == WINDOW) { valuesFrame.dispose(); } m_time = new Date(end.getTime() - start.getTime()); } /** * Run the search. */ public void run() { try { search(); } catch (OutOfMemoryError e) { /* Garbage collect what can be collected to be able to continue. */ System.gc(); m_status = MEMORY; } endSearch(); } /** * Begin the search by starting a new thread. */ private synchronized void beginSearch() throws Exception { /* This method must be synchronized to be able to * call the wait() method. */ Thread search = new Thread(this); search.start(); try { /* Wait for the end of the thread. */ wait(); } catch (InterruptedException e) { /* Signal the interruption to the search. */ m_status = STOP; } } /** * End the search by notifying to the waiting thread that it is finished. */ private synchronized void endSearch() { /* This method must be synchronized to be able to * call the notify() method. */ notify(); } /** * Search in the space of hypotheses the rules that have the highest * confirmation. * The search starts with the empty rule, other rules are generated by * refinement. */ public void search() { SimpleLinkedList nodes = new SimpleLinkedList(); /* The agenda. */ Rule currentNode; SimpleLinkedList children; SimpleLinkedList.LinkedListIterator iter; Rule child; boolean negBody = (m_negation == BODY || m_negation == ALL); boolean negHead = (m_negation == HEAD || m_negation == ALL); /* Start with the empty rule. */ nodes.add(new Rule(m_repeat, m_numLiterals, negBody, negHead, m_classification, m_horn)); /* Print the current values. */ printValues(); /* Explore the rules in the agenda. */ while (m_status != STOP && !nodes.isEmpty()) { currentNode = (Rule) nodes.removeFirst(); if (canRefine(currentNode)) { children = currentNode.refine(m_predicates); iter = children.iterator(); /* Calculate the optimistic estimate of the children and * consider them for adding to the agenda and to the results. */ while (iter.hasNext()) { m_hypotheses++; child = (Rule) iter.next(); child.upDate(m_instances); if (canCalculateOptimistic(child)) { child.calculateOptimistic(); if (canExplore(child)) { m_explored++; if (canStoreInNodes(child)) { } else { iter.remove(); } if (canCalculateConfirmation(child)) { child.calculateConfirmation(); if (canStoreInResults(child)) { addResult(child); } } } else { iter.remove(); } } else { iter.remove(); } } /* Since the agenda is already sorted it is more efficient * to sort the children only and then merge. */ children.sort(Rule.optimisticThenObservedComparator); nodes.merge(children, Rule.optimisticThenObservedComparator); } else { /* The agenda being sorted, it is not worth considering the following * nodes. */ break; } } } /** * returns the results * * @return the results */ public SimpleLinkedList getResults() { return m_results; } /** * Print the current best and worst values. */ private void printValues() { if (m_printValues == NO) { return; } else { if (m_results.isEmpty()) { if (m_printValues == OUT) { System.out.print("0.000000 0.000000 - 0.000000 0.000000"); } else { //m_printValues == WINDOW m_valuesText.setText("0.000000 0.000000 - 0.000000 0.000000"); } } else { Rule best = (Rule) m_results.getFirst(); Rule worst = (Rule) m_results.getLast(); String values = best.valuesToString() + " - " + worst.valuesToString(); if (m_printValues == OUT) { System.out.print("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b"); System.out.print(values); } else { //m_printValues == WINDOW m_valuesText.setText(values); } } } } /** * Outputs the best rules found with their confirmation value and number * of counter-instances. * Also gives the number of hypotheses considered and explored, and the * time needed. */ public String toString() { StringBuffer text = new StringBuffer(); SimpleLinkedList.LinkedListIterator iter = m_results.iterator(); int size = m_results.size(); int i = 0; text.append("\nTertius\n=======\n\n"); while (iter.hasNext()) { Rule current = (Rule) iter.next(); text.append(Utils.doubleToString((double) i + 1, (int) (Math.log(size) / Math.log(10) + 1), 0) + ". "); text.append("/* "); if (m_roc) { text.append(current.rocToString()); } else { text.append(current.valuesToString()); } text.append(" */ "); text.append(current.toString()); text.append("\n"); i++; } text.append("\nNumber of hypotheses considered: " + m_hypotheses); text.append("\nNumber of hypotheses explored: " + m_explored); if (m_status == MEMORY) { text.append("\n\nNot enough memory to continue the search"); } else if (m_status == STOP) { text.append("\n\nSearch interrupted"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6368 $"); } /** * Main method. * * @param args the commandline parameters */ public static void main(String [] args) { runAssociator(new Tertius(), args); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy