weka.attributeSelection.CostSensitiveSubsetEval Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* CostSensitiveSubsetEval.java
* Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
*
*/
package weka.attributeSelection;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import java.util.BitSet;
import java.io.Serializable;
/**
* A meta subset evaluator that makes its base subset evaluator cost-sensitive.
*
*
* Valid options are:
*
* -C <cost file name>
* File name of a cost matrix to use. If this is not supplied,
* a cost matrix will be loaded on demand. The name of the
* on-demand file is the relation name of the training data
* plus ".cost", and the path to the on-demand file is
* specified with the -N option.
*
* -N <directory>
* Name of a directory to search for cost files when loading
* costs on demand (default current directory).
*
* -cost-matrix <matrix>
* The cost matrix in Matlab single line format.
*
* -S <integer>
* The seed to use for random number generation.
*
* -W
* Full name of base evaluator.
* (default: weka.attributeSelection.CfsSubsetEval)
*
*
* Options specific to evaluator weka.attributeSelection.CfsSubsetEval:
*
*
* -M
* Treat missing values as a seperate value.
*
* -L
* Don't include locally predictive attributes.
*
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: 5562 $
*/
public class CostSensitiveSubsetEval
extends CostSensitiveASEvaluation
implements Serializable, SubsetEvaluator, OptionHandler {
/** For serialization */
static final long serialVersionUID = 2924546096103426700L;
/**
* Default constructor.
*/
public CostSensitiveSubsetEval() {
setEvaluator(new CfsSubsetEval());
}
/**
* Set the base evaluator.
*
* @param newEvaluator the evaluator to use.
* @throws IllegalArgumentException if the evaluator is not an instance of SubsetEvaluator
*/
public void setEvaluator(ASEvaluation newEvaluator) throws IllegalArgumentException {
if (!(newEvaluator instanceof SubsetEvaluator)) {
throw new IllegalArgumentException("Evaluator must be an SubsetEvaluator!");
}
m_evaluator = newEvaluator;
}
/**
* Evaluates a subset of attributes. Delegates the actual evaluation to
* the base subset evaluator.
*
* @param subset a bitset representing the attribute subset to be
* evaluated
* @return the "merit" of the subset
* @exception Exception if the subset could not be evaluated
*/
public double evaluateSubset(BitSet subset) throws Exception {
return ((SubsetEvaluator)m_evaluator).evaluateSubset(subset);
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5562 $");
}
/**
* Main method for testing this class.
*
* @param args the options
*/
public static void main (String[] args) {
runEvaluator(new CostSensitiveSubsetEval(), args);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy