weka.attributeSelection.GreedyStepwise Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* GreedyStepwise.java
* Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
*
*/
package weka.attributeSelection;
import java.util.BitSet;
import java.util.Enumeration;
import java.util.Vector;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* GreedyStepwise :
*
* Performs a greedy forward or backward search through the space of attribute
* subsets. May start with no/all attributes or from an arbitrary point in the
* space. Stops when the addition/deletion of any remaining attributes results
* in a decrease in evaluation. Can also produce a ranked list of attributes by
* traversing the space from one side to the other and recording the order that
* attributes are selected.
*
*
*
* Valid options are:
*
*
*
* -C
* Use conservative forward search
*
*
*
* -B
* Use a backward search instead of a
* forward one.
*
*
*
* -P <start set>
* Specify a starting set of attributes.
* Eg. 1,3,5-7.
*
*
*
* -R
* Produce a ranked list of attributes.
*
*
*
* -T <threshold>
* Specify a theshold by which attributes
* may be discarded from the ranking.
* Use in conjuction with -R
*
*
*
* -N <num to select>
* Specify number of attributes to select
*
*
*
*
* @author Mark Hall
* @version $Revision: 11229 $
*/
public class GreedyStepwise
extends ASSearch
implements RankedOutputSearch, StartSetHandler, OptionHandler {
/** for serialization */
static final long serialVersionUID = -6312951970168325471L;
/** does the data have a class */
protected boolean m_hasClass;
/** holds the class index */
protected int m_classIndex;
/** number of attributes in the data */
protected int m_numAttribs;
/** true if the user has requested a ranked list of attributes */
protected boolean m_rankingRequested;
/**
* go from one side of the search space to the other in order to generate a
* ranking
*/
protected boolean m_doRank;
/** used to indicate whether or not ranking has been performed */
protected boolean m_doneRanking;
/**
* A threshold by which to discard attributes---used by the AttributeSelection
* module
*/
protected double m_threshold;
/**
* The number of attributes to select. -1 indicates that all attributes are to
* be retained. Has precedence over m_threshold
*/
protected int m_numToSelect = -1;
protected int m_calculatedNumToSelect;
/** the merit of the best subset found */
protected double m_bestMerit;
/** a ranked list of attribute indexes */
protected double[][] m_rankedAtts;
protected int m_rankedSoFar;
/** the best subset found */
protected BitSet m_best_group;
protected ASEvaluation m_ASEval;
protected Instances m_Instances;
/** holds the start set for the search as a Range */
protected Range m_startRange;
/** holds an array of starting attributes */
protected int[] m_starting;
/** Use a backwards search instead of a forwards one */
protected boolean m_backward = false;
/**
* If set then attributes will continue to be added during a forward search as
* long as the merit does not degrade
*/
protected boolean m_conservativeSelection = false;
/**
* Constructor
*/
public GreedyStepwise() {
m_threshold = -Double.MAX_VALUE;
m_doneRanking = false;
m_startRange = new Range();
m_starting = null;
resetOptions();
}
/**
* Returns a string describing this search method
*
* @return a description of the search suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "GreedyStepwise :\n\nPerforms a greedy forward or backward search "
+ "through "
+ "the space of attribute subsets. May start with no/all attributes or from "
+ "an arbitrary point in the space. Stops when the addition/deletion of any "
+ "remaining attributes results in a decrease in evaluation. "
+ "Can also produce a ranked list of "
+ "attributes by traversing the space from one side to the other and "
+ "recording the order that attributes are selected.\n";
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String searchBackwardsTipText() {
return "Search backwards rather than forwards.";
}
/**
* Set whether to search backwards instead of forwards
*
* @param back true to search backwards
*/
public void setSearchBackwards(boolean back) {
m_backward = back;
if (m_backward) {
setGenerateRanking(false);
}
}
/**
* Get whether to search backwards
*
* @return true if the search will proceed backwards
*/
public boolean getSearchBackwards() {
return m_backward;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String thresholdTipText() {
return "Set threshold by which attributes can be discarded. Default value "
+ "results in no attributes being discarded. Use in conjunction with "
+ "generateRanking";
}
/**
* Set the threshold by which the AttributeSelection module can discard
* attributes.
*
* @param threshold the threshold.
*/
@Override
public void setThreshold(double threshold) {
m_threshold = threshold;
}
/**
* Returns the threshold so that the AttributeSelection module can discard
* attributes from the ranking.
*/
@Override
public double getThreshold() {
return m_threshold;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String numToSelectTipText() {
return "Specify the number of attributes to retain. The default value "
+ "(-1) indicates that all attributes are to be retained. Use either "
+ "this option or a threshold to reduce the attribute set.";
}
/**
* Specify the number of attributes to select from the ranked list (if
* generating a ranking). -1 indicates that all attributes are to be retained.
*
* @param n the number of attributes to retain
*/
@Override
public void setNumToSelect(int n) {
m_numToSelect = n;
}
/**
* Gets the number of attributes to be retained.
*
* @return the number of attributes to retain
*/
@Override
public int getNumToSelect() {
return m_numToSelect;
}
/**
* Gets the calculated number of attributes to retain. This is the actual
* number of attributes to retain. This is the same as getNumToSelect if the
* user specifies a number which is not less than zero. Otherwise it should be
* the number of attributes in the (potentially transformed) data.
*/
@Override
public int getCalculatedNumToSelect() {
if (m_numToSelect >= 0) {
m_calculatedNumToSelect = m_numToSelect;
}
return m_calculatedNumToSelect;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String generateRankingTipText() {
return "Set to true if a ranked list is required.";
}
/**
* Records whether the user has requested a ranked list of attributes.
*
* @param doRank true if ranking is requested
*/
@Override
public void setGenerateRanking(boolean doRank) {
m_rankingRequested = doRank;
}
/**
* Gets whether ranking has been requested. This is used by the
* AttributeSelection module to determine if rankedAttributes() should be
* called.
*
* @return true if ranking has been requested.
*/
@Override
public boolean getGenerateRanking() {
return m_rankingRequested;
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String startSetTipText() {
return "Set the start point for the search. This is specified as a comma "
+ "seperated list off attribute indexes starting at 1. It can include "
+ "ranges. Eg. 1,2,5-9,17.";
}
/**
* Sets a starting set of attributes for the search. It is the search method's
* responsibility to report this start set (if any) in its toString() method.
*
* @param startSet a string containing a list of attributes (and or ranges),
* eg. 1,2,6,10-15.
* @throws Exception if start set can't be set.
*/
@Override
public void setStartSet(String startSet) throws Exception {
m_startRange.setRanges(startSet);
}
/**
* Returns a list of attributes (and or attribute ranges) as a String
*
* @return a list of attributes (and or attribute ranges)
*/
@Override
public String getStartSet() {
return m_startRange.getRanges();
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for displaying in the
* explorer/experimenter gui
*/
public String conservativeForwardSelectionTipText() {
return "If true (and forward search is selected) then attributes "
+ "will continue to be added to the best subset as long as merit does "
+ "not degrade.";
}
/**
* Set whether attributes should continue to be added during a forward search
* as long as merit does not decrease
*
* @param c true if atts should continue to be atted
*/
public void setConservativeForwardSelection(boolean c) {
m_conservativeSelection = c;
}
/**
* Gets whether conservative selection has been enabled
*
* @return true if conservative forward selection is enabled
*/
public boolean getConservativeForwardSelection() {
return m_conservativeSelection;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
**/
@Override
public Enumeration listOptions() {
Vector newVector = new Vector(5);
newVector.addElement(new Option("\tUse conservative forward search"
, "-C", 0, "-C"));
newVector.addElement(new Option("\tUse a backward search instead of a"
+ "\n\tforward one."
, "-B", 0, "-B"));
newVector
.addElement(new Option("\tSpecify a starting set of attributes."
+ "\n\tEg. 1,3,5-7."
, "P", 1
, "-P "));
newVector.addElement(new Option("\tProduce a ranked list of attributes."
, "R", 0, "-R"));
newVector
.addElement(new Option("\tSpecify a theshold by which attributes"
+ "\n\tmay be discarded from the ranking."
+ "\n\tUse in conjuction with -R", "T", 1
, "-T "));
newVector
.addElement(new Option("\tSpecify number of attributes to select"
, "N", 1
, "-N "));
return newVector.elements();
}
/**
* Parses a given list of options.
*
*
* Valid options are:
*
*
*
* -C
* Use conservative forward search
*
*
*
* -B
* Use a backward search instead of a
* forward one.
*
*
*
* -P <start set>
* Specify a starting set of attributes.
* Eg. 1,3,5-7.
*
*
*
* -R
* Produce a ranked list of attributes.
*
*
*
* -T <threshold>
* Specify a theshold by which attributes
* may be discarded from the ranking.
* Use in conjuction with -R
*
*
*
* -N <num to select>
* Specify number of attributes to select
*
*
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
@Override
public void setOptions(String[] options)
throws Exception {
String optionString;
resetOptions();
setSearchBackwards(Utils.getFlag('B', options));
setConservativeForwardSelection(Utils.getFlag('C', options));
optionString = Utils.getOption('P', options);
if (optionString.length() != 0) {
setStartSet(optionString);
}
setGenerateRanking(Utils.getFlag('R', options));
optionString = Utils.getOption('T', options);
if (optionString.length() != 0) {
Double temp;
temp = Double.valueOf(optionString);
setThreshold(temp.doubleValue());
}
optionString = Utils.getOption('N', options);
if (optionString.length() != 0) {
setNumToSelect(Integer.parseInt(optionString));
}
}
/**
* Gets the current settings of ReliefFAttributeEval.
*
* @return an array of strings suitable for passing to setOptions()
*/
@Override
public String[] getOptions() {
String[] options = new String[9];
int current = 0;
if (getSearchBackwards()) {
options[current++] = "-B";
}
if (getConservativeForwardSelection()) {
options[current++] = "-C";
}
if (!(getStartSet().equals(""))) {
options[current++] = "-P";
options[current++] = "" + startSetToString();
}
if (getGenerateRanking()) {
options[current++] = "-R";
}
options[current++] = "-T";
options[current++] = "" + getThreshold();
options[current++] = "-N";
options[current++] = "" + getNumToSelect();
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* converts the array of starting attributes to a string. This is used by
* getOptions to return the actual attributes specified as the starting set.
* This is better than using m_startRanges.getRanges() as the same start set
* can be specified in different ways from the command line---eg 1,2,3 == 1-3.
* This is to ensure that stuff that is stored in a database is comparable.
*
* @return a comma seperated list of individual attribute numbers as a String
*/
protected String startSetToString() {
StringBuffer FString = new StringBuffer();
boolean didPrint;
if (m_starting == null) {
return getStartSet();
}
for (int i = 0; i < m_starting.length; i++) {
didPrint = false;
if ((m_hasClass == false) ||
(m_hasClass == true && i != m_classIndex)) {
FString.append((m_starting[i] + 1));
didPrint = true;
}
if (i == (m_starting.length - 1)) {
FString.append("");
}
else {
if (didPrint) {
FString.append(",");
}
}
}
return FString.toString();
}
/**
* returns a description of the search.
*
* @return a description of the search as a String.
*/
@Override
public String toString() {
StringBuffer FString = new StringBuffer();
FString.append("\tGreedy Stepwise ("
+ ((m_backward)
? "backwards)"
: "forwards)") + ".\n\tStart set: ");
if (m_starting == null) {
if (m_backward) {
FString.append("all attributes\n");
} else {
FString.append("no attributes\n");
}
}
else {
FString.append(startSetToString() + "\n");
}
if (!m_doneRanking) {
FString.append("\tMerit of best subset found: "
+ Utils.doubleToString(Math.abs(m_bestMerit), 8, 3) + "\n");
} else {
if (m_backward) {
FString
.append("\n\tRanking is the order that attributes were removed, " +
"starting \n\twith all attributes. The merit scores in the left" +
"\n\tcolumn are the goodness of the remaining attributes in the" +
"\n\tsubset after removing the corresponding in the right column" +
"\n\tattribute from the subset.\n");
} else {
FString
.append("\n\tRanking is the order that attributes were added, starting "
+
"\n\twith no attributes. The merit scores in the left column" +
"\n\tare the goodness of the subset after the adding the" +
"\n\tcorresponding attribute in the right column to the subset.\n");
}
}
if ((m_threshold != -Double.MAX_VALUE) && (m_doneRanking)) {
FString.append("\tThreshold for discarding attributes: "
+ Utils.doubleToString(m_threshold, 8, 4) + "\n");
}
return FString.toString();
}
/**
* Searches the attribute subset space by forward selection.
*
* @param ASEval the attribute evaluator to guide the search
* @param data the training instances.
* @return an array (not necessarily ordered) of selected attribute indexes
* @throws Exception if the search can't be completed
*/
@Override
public int[] search(ASEvaluation ASEval, Instances data)
throws Exception {
int i;
double best_merit = -Double.MAX_VALUE;
double temp_best, temp_merit;
int temp_index = 0;
BitSet temp_group;
if (data != null) { // this is a fresh run so reset
resetOptions();
m_Instances = new Instances(data, 0);
}
m_ASEval = ASEval;
m_numAttribs = m_Instances.numAttributes();
if (m_best_group == null) {
m_best_group = new BitSet(m_numAttribs);
}
if (!(m_ASEval instanceof SubsetEvaluator)) {
throw new Exception(m_ASEval.getClass().getName()
+ " is not a "
+ "Subset evaluator!");
}
m_startRange.setUpper(m_numAttribs - 1);
if (!(getStartSet().equals(""))) {
m_starting = m_startRange.getSelection();
}
if (m_ASEval instanceof UnsupervisedSubsetEvaluator) {
m_hasClass = false;
m_classIndex = -1;
}
else {
m_hasClass = true;
m_classIndex = m_Instances.classIndex();
}
SubsetEvaluator ASEvaluator = (SubsetEvaluator) m_ASEval;
if (m_rankedAtts == null) {
m_rankedAtts = new double[m_numAttribs][2];
m_rankedSoFar = 0;
}
// If a starting subset has been supplied, then initialise the bitset
if (m_starting != null && m_rankedSoFar <= 0) {
for (i = 0; i < m_starting.length; i++) {
if ((m_starting[i]) != m_classIndex) {
m_best_group.set(m_starting[i]);
}
}
} else {
if (m_backward && m_rankedSoFar <= 0) {
for (i = 0; i < m_numAttribs; i++) {
if (i != m_classIndex) {
m_best_group.set(i);
}
}
}
}
// Evaluate the initial subset
best_merit = ASEvaluator.evaluateSubset(m_best_group);
// main search loop
boolean done = false;
boolean addone = false;
boolean z;
while (!done) {
temp_group = (BitSet) m_best_group.clone();
temp_best = best_merit;
if (m_doRank) {
temp_best = -Double.MAX_VALUE;
}
done = true;
addone = false;
for (i = 0; i < m_numAttribs; i++) {
if (m_backward) {
z = ((i != m_classIndex) && (temp_group.get(i)));
} else {
z = ((i != m_classIndex) && (!temp_group.get(i)));
}
if (z) {
// set/unset the bit
if (m_backward) {
temp_group.clear(i);
} else {
temp_group.set(i);
}
temp_merit = ASEvaluator.evaluateSubset(temp_group);
if (m_backward) {
z = (temp_merit >= temp_best);
} else {
if (m_conservativeSelection) {
z = (temp_merit >= temp_best);
} else {
z = (temp_merit > temp_best);
}
}
if (z) {
temp_best = temp_merit;
temp_index = i;
addone = true;
done = false;
}
// unset this addition/deletion
if (m_backward) {
temp_group.set(i);
} else {
temp_group.clear(i);
}
if (m_doRank) {
done = false;
}
}
}
if (addone) {
if (m_backward) {
m_best_group.clear(temp_index);
} else {
m_best_group.set(temp_index);
}
best_merit = temp_best;
m_rankedAtts[m_rankedSoFar][0] = temp_index;
m_rankedAtts[m_rankedSoFar][1] = best_merit;
m_rankedSoFar++;
}
}
m_bestMerit = best_merit;
return attributeList(m_best_group);
}
/**
* Produces a ranked list of attributes. Search must have been performed prior
* to calling this function. Search is called by this function to complete the
* traversal of the the search space. A list of attributes and merits are
* returned. The attributes a ranked by the order they are added to the subset
* during a forward selection search. Individual merit values reflect the
* merit associated with adding the corresponding attribute to the subset;
* because of this, merit values may initially increase but then decrease as
* the best subset is "passed by" on the way to the far side of the search
* space.
*
* @return an array of attribute indexes and associated merit values
* @throws Exception if something goes wrong.
*/
@Override
public double[][] rankedAttributes() throws Exception {
if (m_rankedAtts == null || m_rankedSoFar == -1) {
throw new Exception("Search must be performed before attributes "
+ "can be ranked.");
}
m_doRank = true;
search(m_ASEval, null);
double[][] final_rank = new double[m_rankedSoFar][2];
for (int i = 0; i < m_rankedSoFar; i++) {
final_rank[i][0] = m_rankedAtts[i][0];
final_rank[i][1] = m_rankedAtts[i][1];
}
resetOptions();
m_doneRanking = true;
if (m_numToSelect > final_rank.length) {
throw new Exception("More attributes requested than exist in the data");
}
if (m_numToSelect <= 0) {
if (m_threshold == -Double.MAX_VALUE) {
m_calculatedNumToSelect = final_rank.length;
} else {
determineNumToSelectFromThreshold(final_rank);
}
}
return final_rank;
}
private void determineNumToSelectFromThreshold(double[][] ranking) {
int count = 0;
for (double[] element : ranking) {
if (element[1] > m_threshold) {
count++;
}
}
m_calculatedNumToSelect = count;
}
/**
* converts a BitSet into a list of attribute indexes
*
* @param group the BitSet to convert
* @return an array of attribute indexes
**/
protected int[] attributeList(BitSet group) {
int count = 0;
// count how many were selected
for (int i = 0; i < m_numAttribs; i++) {
if (group.get(i)) {
count++;
}
}
int[] list = new int[count];
count = 0;
for (int i = 0; i < m_numAttribs; i++) {
if (group.get(i)) {
list[count++] = i;
}
}
return list;
}
/**
* Resets options
*/
protected void resetOptions() {
m_doRank = false;
m_best_group = null;
m_ASEval = null;
m_Instances = null;
m_rankedSoFar = -1;
m_rankedAtts = null;
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 11229 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy