All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.attributeSelection.GreedyStepwise Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    GreedyStepwise.java
 *    Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import java.util.BitSet;
import java.util.Enumeration;
import java.util.Vector;

import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 *  GreedyStepwise :
*
* Performs a greedy forward or backward search through the space of attribute * subsets. May start with no/all attributes or from an arbitrary point in the * space. Stops when the addition/deletion of any remaining attributes results * in a decrease in evaluation. Can also produce a ranked list of attributes by * traversing the space from one side to the other and recording the order that * attributes are selected.
*

* * * Valid options are: *

* *

 * -C
 *  Use conservative forward search
 * 
* *
 * -B
 *  Use a backward search instead of a
 *  forward one.
 * 
* *
 * -P <start set>
 *  Specify a starting set of attributes.
 *  Eg. 1,3,5-7.
 * 
* *
 * -R
 *  Produce a ranked list of attributes.
 * 
* *
 * -T <threshold>
 *  Specify a theshold by which attributes
 *  may be discarded from the ranking.
 *  Use in conjuction with -R
 * 
* *
 * -N <num to select>
 *  Specify number of attributes to select
 * 
* * * * @author Mark Hall * @version $Revision: 11229 $ */ public class GreedyStepwise extends ASSearch implements RankedOutputSearch, StartSetHandler, OptionHandler { /** for serialization */ static final long serialVersionUID = -6312951970168325471L; /** does the data have a class */ protected boolean m_hasClass; /** holds the class index */ protected int m_classIndex; /** number of attributes in the data */ protected int m_numAttribs; /** true if the user has requested a ranked list of attributes */ protected boolean m_rankingRequested; /** * go from one side of the search space to the other in order to generate a * ranking */ protected boolean m_doRank; /** used to indicate whether or not ranking has been performed */ protected boolean m_doneRanking; /** * A threshold by which to discard attributes---used by the AttributeSelection * module */ protected double m_threshold; /** * The number of attributes to select. -1 indicates that all attributes are to * be retained. Has precedence over m_threshold */ protected int m_numToSelect = -1; protected int m_calculatedNumToSelect; /** the merit of the best subset found */ protected double m_bestMerit; /** a ranked list of attribute indexes */ protected double[][] m_rankedAtts; protected int m_rankedSoFar; /** the best subset found */ protected BitSet m_best_group; protected ASEvaluation m_ASEval; protected Instances m_Instances; /** holds the start set for the search as a Range */ protected Range m_startRange; /** holds an array of starting attributes */ protected int[] m_starting; /** Use a backwards search instead of a forwards one */ protected boolean m_backward = false; /** * If set then attributes will continue to be added during a forward search as * long as the merit does not degrade */ protected boolean m_conservativeSelection = false; /** * Constructor */ public GreedyStepwise() { m_threshold = -Double.MAX_VALUE; m_doneRanking = false; m_startRange = new Range(); m_starting = null; resetOptions(); } /** * Returns a string describing this search method * * @return a description of the search suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "GreedyStepwise :\n\nPerforms a greedy forward or backward search " + "through " + "the space of attribute subsets. May start with no/all attributes or from " + "an arbitrary point in the space. Stops when the addition/deletion of any " + "remaining attributes results in a decrease in evaluation. " + "Can also produce a ranked list of " + "attributes by traversing the space from one side to the other and " + "recording the order that attributes are selected.\n"; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String searchBackwardsTipText() { return "Search backwards rather than forwards."; } /** * Set whether to search backwards instead of forwards * * @param back true to search backwards */ public void setSearchBackwards(boolean back) { m_backward = back; if (m_backward) { setGenerateRanking(false); } } /** * Get whether to search backwards * * @return true if the search will proceed backwards */ public boolean getSearchBackwards() { return m_backward; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String thresholdTipText() { return "Set threshold by which attributes can be discarded. Default value " + "results in no attributes being discarded. Use in conjunction with " + "generateRanking"; } /** * Set the threshold by which the AttributeSelection module can discard * attributes. * * @param threshold the threshold. */ @Override public void setThreshold(double threshold) { m_threshold = threshold; } /** * Returns the threshold so that the AttributeSelection module can discard * attributes from the ranking. */ @Override public double getThreshold() { return m_threshold; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numToSelectTipText() { return "Specify the number of attributes to retain. The default value " + "(-1) indicates that all attributes are to be retained. Use either " + "this option or a threshold to reduce the attribute set."; } /** * Specify the number of attributes to select from the ranked list (if * generating a ranking). -1 indicates that all attributes are to be retained. * * @param n the number of attributes to retain */ @Override public void setNumToSelect(int n) { m_numToSelect = n; } /** * Gets the number of attributes to be retained. * * @return the number of attributes to retain */ @Override public int getNumToSelect() { return m_numToSelect; } /** * Gets the calculated number of attributes to retain. This is the actual * number of attributes to retain. This is the same as getNumToSelect if the * user specifies a number which is not less than zero. Otherwise it should be * the number of attributes in the (potentially transformed) data. */ @Override public int getCalculatedNumToSelect() { if (m_numToSelect >= 0) { m_calculatedNumToSelect = m_numToSelect; } return m_calculatedNumToSelect; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String generateRankingTipText() { return "Set to true if a ranked list is required."; } /** * Records whether the user has requested a ranked list of attributes. * * @param doRank true if ranking is requested */ @Override public void setGenerateRanking(boolean doRank) { m_rankingRequested = doRank; } /** * Gets whether ranking has been requested. This is used by the * AttributeSelection module to determine if rankedAttributes() should be * called. * * @return true if ranking has been requested. */ @Override public boolean getGenerateRanking() { return m_rankingRequested; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String startSetTipText() { return "Set the start point for the search. This is specified as a comma " + "seperated list off attribute indexes starting at 1. It can include " + "ranges. Eg. 1,2,5-9,17."; } /** * Sets a starting set of attributes for the search. It is the search method's * responsibility to report this start set (if any) in its toString() method. * * @param startSet a string containing a list of attributes (and or ranges), * eg. 1,2,6,10-15. * @throws Exception if start set can't be set. */ @Override public void setStartSet(String startSet) throws Exception { m_startRange.setRanges(startSet); } /** * Returns a list of attributes (and or attribute ranges) as a String * * @return a list of attributes (and or attribute ranges) */ @Override public String getStartSet() { return m_startRange.getRanges(); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String conservativeForwardSelectionTipText() { return "If true (and forward search is selected) then attributes " + "will continue to be added to the best subset as long as merit does " + "not degrade."; } /** * Set whether attributes should continue to be added during a forward search * as long as merit does not decrease * * @param c true if atts should continue to be atted */ public void setConservativeForwardSelection(boolean c) { m_conservativeSelection = c; } /** * Gets whether conservative selection has been enabled * * @return true if conservative forward selection is enabled */ public boolean getConservativeForwardSelection() { return m_conservativeSelection; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. **/ @Override public Enumeration listOptions() { Vector newVector = new Vector(5); newVector.addElement(new Option("\tUse conservative forward search" , "-C", 0, "-C")); newVector.addElement(new Option("\tUse a backward search instead of a" + "\n\tforward one." , "-B", 0, "-B")); newVector .addElement(new Option("\tSpecify a starting set of attributes." + "\n\tEg. 1,3,5-7." , "P", 1 , "-P ")); newVector.addElement(new Option("\tProduce a ranked list of attributes." , "R", 0, "-R")); newVector .addElement(new Option("\tSpecify a theshold by which attributes" + "\n\tmay be discarded from the ranking." + "\n\tUse in conjuction with -R", "T", 1 , "-T ")); newVector .addElement(new Option("\tSpecify number of attributes to select" , "N", 1 , "-N ")); return newVector.elements(); } /** * Parses a given list of options. *

* * Valid options are: *

* *

   * -C
   *  Use conservative forward search
   * 
* *
   * -B
   *  Use a backward search instead of a
   *  forward one.
   * 
* *
   * -P <start set>
   *  Specify a starting set of attributes.
   *  Eg. 1,3,5-7.
   * 
* *
   * -R
   *  Produce a ranked list of attributes.
   * 
* *
   * -T <threshold>
   *  Specify a theshold by which attributes
   *  may be discarded from the ranking.
   *  Use in conjuction with -R
   * 
* *
   * -N <num to select>
   *  Specify number of attributes to select
   * 
* * * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String optionString; resetOptions(); setSearchBackwards(Utils.getFlag('B', options)); setConservativeForwardSelection(Utils.getFlag('C', options)); optionString = Utils.getOption('P', options); if (optionString.length() != 0) { setStartSet(optionString); } setGenerateRanking(Utils.getFlag('R', options)); optionString = Utils.getOption('T', options); if (optionString.length() != 0) { Double temp; temp = Double.valueOf(optionString); setThreshold(temp.doubleValue()); } optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumToSelect(Integer.parseInt(optionString)); } } /** * Gets the current settings of ReliefFAttributeEval. * * @return an array of strings suitable for passing to setOptions() */ @Override public String[] getOptions() { String[] options = new String[9]; int current = 0; if (getSearchBackwards()) { options[current++] = "-B"; } if (getConservativeForwardSelection()) { options[current++] = "-C"; } if (!(getStartSet().equals(""))) { options[current++] = "-P"; options[current++] = "" + startSetToString(); } if (getGenerateRanking()) { options[current++] = "-R"; } options[current++] = "-T"; options[current++] = "" + getThreshold(); options[current++] = "-N"; options[current++] = "" + getNumToSelect(); while (current < options.length) { options[current++] = ""; } return options; } /** * converts the array of starting attributes to a string. This is used by * getOptions to return the actual attributes specified as the starting set. * This is better than using m_startRanges.getRanges() as the same start set * can be specified in different ways from the command line---eg 1,2,3 == 1-3. * This is to ensure that stuff that is stored in a database is comparable. * * @return a comma seperated list of individual attribute numbers as a String */ protected String startSetToString() { StringBuffer FString = new StringBuffer(); boolean didPrint; if (m_starting == null) { return getStartSet(); } for (int i = 0; i < m_starting.length; i++) { didPrint = false; if ((m_hasClass == false) || (m_hasClass == true && i != m_classIndex)) { FString.append((m_starting[i] + 1)); didPrint = true; } if (i == (m_starting.length - 1)) { FString.append(""); } else { if (didPrint) { FString.append(","); } } } return FString.toString(); } /** * returns a description of the search. * * @return a description of the search as a String. */ @Override public String toString() { StringBuffer FString = new StringBuffer(); FString.append("\tGreedy Stepwise (" + ((m_backward) ? "backwards)" : "forwards)") + ".\n\tStart set: "); if (m_starting == null) { if (m_backward) { FString.append("all attributes\n"); } else { FString.append("no attributes\n"); } } else { FString.append(startSetToString() + "\n"); } if (!m_doneRanking) { FString.append("\tMerit of best subset found: " + Utils.doubleToString(Math.abs(m_bestMerit), 8, 3) + "\n"); } else { if (m_backward) { FString .append("\n\tRanking is the order that attributes were removed, " + "starting \n\twith all attributes. The merit scores in the left" + "\n\tcolumn are the goodness of the remaining attributes in the" + "\n\tsubset after removing the corresponding in the right column" + "\n\tattribute from the subset.\n"); } else { FString .append("\n\tRanking is the order that attributes were added, starting " + "\n\twith no attributes. The merit scores in the left column" + "\n\tare the goodness of the subset after the adding the" + "\n\tcorresponding attribute in the right column to the subset.\n"); } } if ((m_threshold != -Double.MAX_VALUE) && (m_doneRanking)) { FString.append("\tThreshold for discarding attributes: " + Utils.doubleToString(m_threshold, 8, 4) + "\n"); } return FString.toString(); } /** * Searches the attribute subset space by forward selection. * * @param ASEval the attribute evaluator to guide the search * @param data the training instances. * @return an array (not necessarily ordered) of selected attribute indexes * @throws Exception if the search can't be completed */ @Override public int[] search(ASEvaluation ASEval, Instances data) throws Exception { int i; double best_merit = -Double.MAX_VALUE; double temp_best, temp_merit; int temp_index = 0; BitSet temp_group; if (data != null) { // this is a fresh run so reset resetOptions(); m_Instances = new Instances(data, 0); } m_ASEval = ASEval; m_numAttribs = m_Instances.numAttributes(); if (m_best_group == null) { m_best_group = new BitSet(m_numAttribs); } if (!(m_ASEval instanceof SubsetEvaluator)) { throw new Exception(m_ASEval.getClass().getName() + " is not a " + "Subset evaluator!"); } m_startRange.setUpper(m_numAttribs - 1); if (!(getStartSet().equals(""))) { m_starting = m_startRange.getSelection(); } if (m_ASEval instanceof UnsupervisedSubsetEvaluator) { m_hasClass = false; m_classIndex = -1; } else { m_hasClass = true; m_classIndex = m_Instances.classIndex(); } SubsetEvaluator ASEvaluator = (SubsetEvaluator) m_ASEval; if (m_rankedAtts == null) { m_rankedAtts = new double[m_numAttribs][2]; m_rankedSoFar = 0; } // If a starting subset has been supplied, then initialise the bitset if (m_starting != null && m_rankedSoFar <= 0) { for (i = 0; i < m_starting.length; i++) { if ((m_starting[i]) != m_classIndex) { m_best_group.set(m_starting[i]); } } } else { if (m_backward && m_rankedSoFar <= 0) { for (i = 0; i < m_numAttribs; i++) { if (i != m_classIndex) { m_best_group.set(i); } } } } // Evaluate the initial subset best_merit = ASEvaluator.evaluateSubset(m_best_group); // main search loop boolean done = false; boolean addone = false; boolean z; while (!done) { temp_group = (BitSet) m_best_group.clone(); temp_best = best_merit; if (m_doRank) { temp_best = -Double.MAX_VALUE; } done = true; addone = false; for (i = 0; i < m_numAttribs; i++) { if (m_backward) { z = ((i != m_classIndex) && (temp_group.get(i))); } else { z = ((i != m_classIndex) && (!temp_group.get(i))); } if (z) { // set/unset the bit if (m_backward) { temp_group.clear(i); } else { temp_group.set(i); } temp_merit = ASEvaluator.evaluateSubset(temp_group); if (m_backward) { z = (temp_merit >= temp_best); } else { if (m_conservativeSelection) { z = (temp_merit >= temp_best); } else { z = (temp_merit > temp_best); } } if (z) { temp_best = temp_merit; temp_index = i; addone = true; done = false; } // unset this addition/deletion if (m_backward) { temp_group.set(i); } else { temp_group.clear(i); } if (m_doRank) { done = false; } } } if (addone) { if (m_backward) { m_best_group.clear(temp_index); } else { m_best_group.set(temp_index); } best_merit = temp_best; m_rankedAtts[m_rankedSoFar][0] = temp_index; m_rankedAtts[m_rankedSoFar][1] = best_merit; m_rankedSoFar++; } } m_bestMerit = best_merit; return attributeList(m_best_group); } /** * Produces a ranked list of attributes. Search must have been performed prior * to calling this function. Search is called by this function to complete the * traversal of the the search space. A list of attributes and merits are * returned. The attributes a ranked by the order they are added to the subset * during a forward selection search. Individual merit values reflect the * merit associated with adding the corresponding attribute to the subset; * because of this, merit values may initially increase but then decrease as * the best subset is "passed by" on the way to the far side of the search * space. * * @return an array of attribute indexes and associated merit values * @throws Exception if something goes wrong. */ @Override public double[][] rankedAttributes() throws Exception { if (m_rankedAtts == null || m_rankedSoFar == -1) { throw new Exception("Search must be performed before attributes " + "can be ranked."); } m_doRank = true; search(m_ASEval, null); double[][] final_rank = new double[m_rankedSoFar][2]; for (int i = 0; i < m_rankedSoFar; i++) { final_rank[i][0] = m_rankedAtts[i][0]; final_rank[i][1] = m_rankedAtts[i][1]; } resetOptions(); m_doneRanking = true; if (m_numToSelect > final_rank.length) { throw new Exception("More attributes requested than exist in the data"); } if (m_numToSelect <= 0) { if (m_threshold == -Double.MAX_VALUE) { m_calculatedNumToSelect = final_rank.length; } else { determineNumToSelectFromThreshold(final_rank); } } return final_rank; } private void determineNumToSelectFromThreshold(double[][] ranking) { int count = 0; for (double[] element : ranking) { if (element[1] > m_threshold) { count++; } } m_calculatedNumToSelect = count; } /** * converts a BitSet into a list of attribute indexes * * @param group the BitSet to convert * @return an array of attribute indexes **/ protected int[] attributeList(BitSet group) { int count = 0; // count how many were selected for (int i = 0; i < m_numAttribs; i++) { if (group.get(i)) { count++; } } int[] list = new int[count]; count = 0; for (int i = 0; i < m_numAttribs; i++) { if (group.get(i)) { list[count++] = i; } } return list; } /** * Resets options */ protected void resetOptions() { m_doRank = false; m_best_group = null; m_ASEval = null; m_Instances = null; m_rankedSoFar = -1; m_rankedAtts = null; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 11229 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy