All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.attributeSelection.Ranker Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Ranker.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Vector;

/** 
 
 * Ranker : 
*
* Ranks attributes by their individual evaluations. Use in conjunction with attribute evaluators (ReliefF, GainRatio, Entropy etc).
*

* * Valid options are:

* *

 -P <start set>
 *  Specify a starting set of attributes.
 *  Eg. 1,3,5-7.
 *  Any starting attributes specified are
 *  ignored during the ranking.
* *
 -T <threshold>
 *  Specify a theshold by which attributes
 *  may be discarded from the ranking.
* *
 -N <num to select>
 *  Specify number of attributes to select
* * * @author Mark Hall ([email protected]) * @version $Revision: 1.26 $ */ public class Ranker extends ASSearch implements RankedOutputSearch, StartSetHandler, OptionHandler { /** for serialization */ static final long serialVersionUID = -9086714848510751934L; /** Holds the starting set as an array of attributes */ private int[] m_starting; /** Holds the start set for the search as a range */ private Range m_startRange; /** Holds the ordered list of attributes */ private int[] m_attributeList; /** Holds the list of attribute merit scores */ private double[] m_attributeMerit; /** Data has class attribute---if unsupervised evaluator then no class */ private boolean m_hasClass; /** Class index of the data if supervised evaluator */ private int m_classIndex; /** The number of attribtes */ private int m_numAttribs; /** * A threshold by which to discard attributes---used by the * AttributeSelection module */ private double m_threshold; /** The number of attributes to select. -1 indicates that all attributes are to be retained. Has precedence over m_threshold */ private int m_numToSelect = -1; /** Used to compute the number to select */ private int m_calculatedNumToSelect = -1; /** * Returns a string describing this search method * @return a description of the search suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Ranker : \n\nRanks attributes by their individual evaluations. " +"Use in conjunction with attribute evaluators (ReliefF, GainRatio, " +"Entropy etc).\n"; } /** * Constructor */ public Ranker () { resetOptions(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numToSelectTipText() { return "Specify the number of attributes to retain. The default value " +"(-1) indicates that all attributes are to be retained. Use either " +"this option or a threshold to reduce the attribute set."; } /** * Specify the number of attributes to select from the ranked list. -1 * indicates that all attributes are to be retained. * @param n the number of attributes to retain */ public void setNumToSelect(int n) { m_numToSelect = n; } /** * Gets the number of attributes to be retained. * @return the number of attributes to retain */ public int getNumToSelect() { return m_numToSelect; } /** * Gets the calculated number to select. This might be computed * from a threshold, or if < 0 is set as the number to select then * it is set to the number of attributes in the (transformed) data. * @return the calculated number of attributes to select */ public int getCalculatedNumToSelect() { if (m_numToSelect >= 0) { m_calculatedNumToSelect = m_numToSelect; } return m_calculatedNumToSelect; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String thresholdTipText() { return "Set threshold by which attributes can be discarded. Default value " + "results in no attributes being discarded. Use either this option or " +"numToSelect to reduce the attribute set."; } /** * Set the threshold by which the AttributeSelection module can discard * attributes. * @param threshold the threshold. */ public void setThreshold(double threshold) { m_threshold = threshold; } /** * Returns the threshold so that the AttributeSelection module can * discard attributes from the ranking. */ public double getThreshold() { return m_threshold; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String generateRankingTipText() { return "A constant option. Ranker is only capable of generating " +" attribute rankings."; } /** * This is a dummy set method---Ranker is ONLY capable of producing * a ranked list of attributes for attribute evaluators. * @param doRank this parameter is N/A and is ignored */ public void setGenerateRanking(boolean doRank) { } /** * This is a dummy method. Ranker can ONLY be used with attribute * evaluators and as such can only produce a ranked list of attributes * @return true all the time. */ public boolean getGenerateRanking() { return true; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String startSetTipText() { return "Specify a set of attributes to ignore. " +" When generating the ranking, Ranker will not evaluate the attributes " +" in this list. " +"This is specified as a comma " +"seperated list off attribute indexes starting at 1. It can include " +"ranges. Eg. 1,2,5-9,17."; } /** * Sets a starting set of attributes for the search. It is the * search method's responsibility to report this start set (if any) * in its toString() method. * @param startSet a string containing a list of attributes (and or ranges), * eg. 1,2,6,10-15. * @throws Exception if start set can't be set. */ public void setStartSet (String startSet) throws Exception { m_startRange.setRanges(startSet); } /** * Returns a list of attributes (and or attribute ranges) as a String * @return a list of attributes (and or attribute ranges) */ public String getStartSet () { return m_startRange.getRanges(); } /** * Returns an enumeration describing the available options. * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector newVector = new Vector(3); newVector .addElement(new Option("\tSpecify a starting set of attributes.\n" + "\tEg. 1,3,5-7.\n" +"\tAny starting attributes specified are\n" +"\tignored during the ranking." ,"P",1 , "-P ")); newVector .addElement(new Option("\tSpecify a theshold by which attributes\n" + "\tmay be discarded from the ranking.","T",1 , "-T ")); newVector .addElement(new Option("\tSpecify number of attributes to select" ,"N",1 , "-N ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -P <start set>
   *  Specify a starting set of attributes.
   *  Eg. 1,3,5-7.
   *  Any starting attributes specified are
   *  ignored during the ranking.
* *
 -T <threshold>
   *  Specify a theshold by which attributes
   *  may be discarded from the ranking.
* *
 -N <num to select>
   *  Specify number of attributes to select
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { String optionString; resetOptions(); optionString = Utils.getOption('P', options); if (optionString.length() != 0) { setStartSet(optionString); } optionString = Utils.getOption('T', options); if (optionString.length() != 0) { Double temp; temp = Double.valueOf(optionString); setThreshold(temp.doubleValue()); } optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumToSelect(Integer.parseInt(optionString)); } } /** * Gets the current settings of ReliefFAttributeEval. * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] options = new String[6]; int current = 0; if (!(getStartSet().equals(""))) { options[current++] = "-P"; options[current++] = ""+startSetToString(); } options[current++] = "-T"; options[current++] = "" + getThreshold(); options[current++] = "-N"; options[current++] = ""+getNumToSelect(); while (current < options.length) { options[current++] = ""; } return options; } /** * converts the array of starting attributes to a string. This is * used by getOptions to return the actual attributes specified * as the starting set. This is better than using m_startRanges.getRanges() * as the same start set can be specified in different ways from the * command line---eg 1,2,3 == 1-3. This is to ensure that stuff that * is stored in a database is comparable. * @return a comma seperated list of individual attribute numbers as a String */ private String startSetToString() { StringBuffer FString = new StringBuffer(); boolean didPrint; if (m_starting == null) { return getStartSet(); } for (int i = 0; i < m_starting.length; i++) { didPrint = false; if ((m_hasClass == false) || (m_hasClass == true && i != m_classIndex)) { FString.append((m_starting[i] + 1)); didPrint = true; } if (i == (m_starting.length - 1)) { FString.append(""); } else { if (didPrint) { FString.append(","); } } } return FString.toString(); } /** * Kind of a dummy search algorithm. Calls a Attribute evaluator to * evaluate each attribute not included in the startSet and then sorts * them to produce a ranked list of attributes. * * @param ASEval the attribute evaluator to guide the search * @param data the training instances. * @return an array (not necessarily ordered) of selected attribute indexes * @throws Exception if the search can't be completed */ public int[] search (ASEvaluation ASEval, Instances data) throws Exception { int i, j; if (!(ASEval instanceof AttributeEvaluator)) { throw new Exception(ASEval.getClass().getName() + " is not a" + "Attribute evaluator!"); } m_numAttribs = data.numAttributes(); if (ASEval instanceof UnsupervisedAttributeEvaluator) { m_hasClass = false; } else { m_classIndex = data.classIndex(); if (m_classIndex >= 0) { m_hasClass = true; } else { m_hasClass = false; } } // get the transformed data and check to see if the transformer // preserves a class index if (ASEval instanceof AttributeTransformer) { data = ((AttributeTransformer)ASEval).transformedHeader(); if (m_classIndex >= 0 && data.classIndex() >= 0) { m_classIndex = data.classIndex(); m_hasClass = true; } } m_startRange.setUpper(m_numAttribs - 1); if (!(getStartSet().equals(""))) { m_starting = m_startRange.getSelection(); } int sl=0; if (m_starting != null) { sl = m_starting.length; } if ((m_starting != null) && (m_hasClass == true)) { // see if the supplied list contains the class index boolean ok = false; for (i = 0; i < sl; i++) { if (m_starting[i] == m_classIndex) { ok = true; break; } } if (ok == false) { sl++; } } else { if (m_hasClass == true) { sl++; } } m_attributeList = new int[m_numAttribs - sl]; m_attributeMerit = new double[m_numAttribs - sl]; // add in those attributes not in the starting (omit list) for (i = 0, j = 0; i < m_numAttribs; i++) { if (!inStarting(i)) { m_attributeList[j++] = i; } } AttributeEvaluator ASEvaluator = (AttributeEvaluator)ASEval; for (i = 0; i < m_attributeList.length; i++) { m_attributeMerit[i] = ASEvaluator.evaluateAttribute(m_attributeList[i]); } double[][] tempRanked = rankedAttributes(); int[] rankedAttributes = new int[m_attributeList.length]; for (i = 0; i < m_attributeList.length; i++) { rankedAttributes[i] = (int)tempRanked[i][0]; } return rankedAttributes; } /** * Sorts the evaluated attribute list * * @return an array of sorted (highest eval to lowest) attribute indexes * @throws Exception of sorting can't be done. */ public double[][] rankedAttributes () throws Exception { int i, j; if (m_attributeList == null || m_attributeMerit == null) { throw new Exception("Search must be performed before a ranked " + "attribute list can be obtained"); } int[] ranked = Utils.sort(m_attributeMerit); // reverse the order of the ranked indexes double[][] bestToWorst = new double[ranked.length][2]; for (i = ranked.length - 1, j = 0; i >= 0; i--) { bestToWorst[j++][0] = ranked[i]; } // convert the indexes to attribute indexes for (i = 0; i < bestToWorst.length; i++) { int temp = ((int)bestToWorst[i][0]); bestToWorst[i][0] = m_attributeList[temp]; bestToWorst[i][1] = m_attributeMerit[temp]; } if (m_numToSelect > bestToWorst.length) { throw new Exception("More attributes requested than exist in the data"); } if (m_numToSelect <= 0) { if (m_threshold == -Double.MAX_VALUE) { m_calculatedNumToSelect = bestToWorst.length; } else { determineNumToSelectFromThreshold(bestToWorst); } } /* if (m_numToSelect > 0) { determineThreshFromNumToSelect(bestToWorst); } */ return bestToWorst; } private void determineNumToSelectFromThreshold(double [][] ranking) { int count = 0; for (int i = 0; i < ranking.length; i++) { if (ranking[i][1] > m_threshold) { count++; } } m_calculatedNumToSelect = count; } private void determineThreshFromNumToSelect(double [][] ranking) throws Exception { if (m_numToSelect > ranking.length) { throw new Exception("More attributes requested than exist in the data"); } if (m_numToSelect == ranking.length) { return; } m_threshold = (ranking[m_numToSelect-1][1] + ranking[m_numToSelect][1]) / 2.0; } /** * returns a description of the search as a String * @return a description of the search */ public String toString () { StringBuffer BfString = new StringBuffer(); BfString.append("\tAttribute ranking.\n"); if (m_starting != null) { BfString.append("\tIgnored attributes: "); BfString.append(startSetToString()); BfString.append("\n"); } if (m_threshold != -Double.MAX_VALUE) { BfString.append("\tThreshold for discarding attributes: " + Utils.doubleToString(m_threshold,8,4)+"\n"); } return BfString.toString(); } /** * Resets stuff to default values */ protected void resetOptions () { m_starting = null; m_startRange = new Range(); m_attributeList = null; m_attributeMerit = null; m_threshold = -Double.MAX_VALUE; } private boolean inStarting (int feat) { // omit the class from the evaluation if ((m_hasClass == true) && (feat == m_classIndex)) { return true; } if (m_starting == null) { return false; } for (int i = 0; i < m_starting.length; i++) { if (m_starting[i] == feat) { return true; } } return false; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.26 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy