weka.classifiers.RandomizableIteratedSingleClassifierEnhancer Maven / Gradle / Ivy
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* RandomizableIteratedSingleClassifierEnhancer.java
* Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers;
import weka.core.Option;
import weka.core.Randomizable;
import weka.core.Utils;
import java.util.Enumeration;
import java.util.Vector;
/**
* Abstract utility class for handling settings common to randomizable
* meta classifiers that build an ensemble from a single base learner.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 1.4 $
*/
public abstract class RandomizableIteratedSingleClassifierEnhancer
extends IteratedSingleClassifierEnhancer implements Randomizable {
/** for serialization */
private static final long serialVersionUID = 5063351391524938557L;
/** The random number seed. */
protected int m_Seed = 1;
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(2);
newVector.addElement(new Option(
"\tRandom number seed.\n"
+ "\t(default 1)",
"S", 1, "-S "));
Enumeration enu = super.listOptions();
while (enu.hasMoreElements()) {
newVector.addElement(enu.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:
*
* -W classname
* Specify the full class name of the base learner.
*
* -I num
* Set the number of iterations (default 10).
*
* -S num
* Set the random number seed (default 1).
*
* Options after -- are passed to the designated classifier.
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String seed = Utils.getOption('S', options);
if (seed.length() != 0) {
setSeed(Integer.parseInt(seed));
} else {
setSeed(1);
}
super.setOptions(options);
}
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options = new String [superOptions.length + 2];
int current = 0;
options[current++] = "-S";
options[current++] = "" + getSeed();
System.arraycopy(superOptions, 0, options, current,
superOptions.length);
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String seedTipText() {
return "The random number seed to be used.";
}
/**
* Set the seed for random number generation.
*
* @param seed the seed
*/
public void setSeed(int seed) {
m_Seed = seed;
}
/**
* Gets the seed for the random number generations
*
* @return the seed for the random number generation
*/
public int getSeed() {
return m_Seed;
}
}